Predicting vineyard's evolution with the crop model IVINE driven by meteorological model forecasts: preliminary results.

Author(s):  
Valentina Andreoli ◽  
Claudio Cassardo ◽  
Massimiliano Manfrin

<p><span><span>The crop growth model IVINE (Italian Vineyard Integrated Numerical model for Estimating physiological values) was developed at our Dept. of Physics in FORTRAN language as a research model in order to evaluate the environmental forcing effects on vine growth, being vines generally strongly sensitive to meteorological conditions, and with the idea of using it for assessing climate change effects on grape growth. IVINE requires a set of hourly meteorological and soil data as boundary conditions. Input data that are more relevant for the model to correctly simulate the plant growth are air temperature and soil moisture. Among the principal IVINE outputs, we mention: the main phenological stages (dormancy exit, bud-break, fruit set, veraison, and harvest), the Leaf Area Index, the yield, the berry sugar concentration and the predawn leaf water potential. IVINE model requires to set some experimental parameters depending on the cultivar; at present, IVINE is optimized for Nebbiolo and other northern Italy autocthonous and common varieties. In order to use the model for forecasting purposes, the set of input data required by IVINE must be retrieved by the simulation's outputs of a mesoscale model, in turn driven by a Global Circulation Model simulation. In our Department, a voluntary meteorological forecasting service has been working for several years; for this task four daily 5-days simulations are performed over Piedmont Italian region with WRF (Weather Research and Forecast) mesoscale model driven by the GFS (Global Forecast</span> <span>System). Taking advantage of these runs, we have organized a system able to extract, for each simulation, the hourly values of the parameters needed by IVINE. The input dataset is updated every six hours using the values coming by the new simulation, while considering past values acquired. Since IVINE simulation must start from the previous season, in order to correctly simulate the dormancy exit, we have carried out several simulations with IVINE by starting in the same date (</span><span>January 1</span><sup><span>st</span></sup><span> 2018</span><span>) and ending at the fifth day of the last available WRF simulation. In this way, we were able to made a sort of temporal ensemble meteogram for the last five days; where the results of the most recent simulation were displayed with those of previuos runs and the number of simulations was gradually decreasing from 20 to 1 with the progress of the time.</span></span></p><p><span><span>The simulations were performed for the whole 2019 year over 156 WRF grid points distributed in the Langhe, Roero and Monferrato wine areas of Piedmont. Here some </span><span>pheno-physiological variables in vineyards </span><span>are analyzed, relative to some significant points and events, and the main results are discussed.</span></span></p>

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
P. Goswami ◽  
J. Baruah

Concentrations of atmospheric pollutants are strongly influenced by meteorological parameters like rainfall, relative humidity and wind advection. Thus accurate specifications of the meteorological fields, and their effects on pollutants, are critical requirements for successful modelling of air pollution. In terms of their applications, pollutant concentration models can be used in different ways; in one, short term high resolution forecasts are generated to predict and manage urban pollution. Another application of dynamical pollution models is to generate outlook for a given airbasin, such as over a large city. An important question is application-specific model configuration for the meteorological simulations. While a meso-scale model provides a high-resolution configuration, a global model allows better simulation of large-sale fields through its global environment. Our objective is to comparatively evaluate a meso-scale atmospheric model (MM5) and atmospheric global circulation model (AGCM) in simulating different species of pollutants over different airbasins. In this study we consider four locations: ITO (Central Delhi), Sirifort (South Delhi), Bandra (Mumbai) and Karve Road (Pune). The results show that both the model configurations provide comparable skills in simulation of monthly and annual loads, although the skill of the meso-scale model is somewhat higher, especially at shorter time scales.


2009 ◽  
Vol 137 (6) ◽  
pp. 1863-1880 ◽  
Author(s):  
P. Heinrich ◽  
X. Blanchard

Abstract Atmospheric transport of the natural radionuclide 210Pb is simulated by a general circulation model (GCM) and calculated surface concentrations are compared with those recorded at the Tahiti station on a daily scale. Numerical results for 2006 show the underestimation of concentrations for most recorded peaks. The purpose of this paper is to explain the observed discrepancies, to evaluate the GCM physical parameterizations, and to determine by numerical means the concentrations at Tahiti for a pollutant circulating across the South Pacific Ocean. Three meteorological situations in 2006 are further analyzed. Circulation over Tahiti for these periods is simulated by a mesoscale meteorological model using four nested grids with resolutions ranging from 27 to 1 km. The calculated wind fields are validated by those observed at two stations on the northwest coast of Tahiti, which is exposed both to topography-induced vortices and to thermally driven local breezes. Atmospheric dispersion of an offshore plume is then calculated by a particle Lagrangian transport model, driven by the mesoscale model at 1- and 81-km resolutions, representing local and global circulations, respectively. Simulations at 1-km resolution show the complex atmospheric circulation over Tahiti, which results in a large spatial and temporal variability of 210Pb surface concentrations on an hourly scale. The impact of local circulation is, however, limited when daily averaged concentrations at the station are considered. Under the studied regimes, transport simulations at the two resolutions lead to similar daily averaged concentrations. The deficiencies of the GCM in simulating daily averaged 210Pb concentrations could be attributable to the deep convection parameterization.


2021 ◽  
Author(s):  
Anna Maria De Girolamo ◽  
Youssef Brouziyne ◽  
Lahcen Benaabidate ◽  
Aziz Aboubdillah ◽  
Ali El Bilali ◽  
...  

<p>The non-perennial streams and rivers are predominant in the Mediterranean region and play an important ecological role in the ecosystem diversity in this region. This class of streams is particularly vulnerable to climate change effects that are expected to amplify further under most climatic projections. Understanding the potential response of the hydrologic regime attributes to climatic stress helps in planning better conservation and management strategies. Bouregreg watershed (BW) in Morocco, is a strategic watershed for the region with a developed non-perennial stream network, and with typical assets and challenges of most Mediterranean watersheds. In this study, a hybrid modeling approach, based on the Soil and Water Assessment Tool (SWAT) model and Indicator of Hydrologic Alteration (IHA) program, was used to simulate the response of BW's stream network to climate change during the period: 2035-2050. Downscaled daily climate data from the global circulation model CNRM-CM5 were used to force the hybrid modeling framework over the study area. Results showed that, under the changing climate, the magnitude of the alteration will be different across the stream network; however, almost the entire flow regime attributes will be affected. Under the RCP8.5 scenario, the average number of zero-flow days will rise up from 3 to 17.5 days per year in some streams, the timing of the maximum flow was calculated to occur earlier by 17 days than in baseline, and the timing of the minimal flow should occur later by 170 days in some streams. The used modeling approach in this study contributed in identifying the most vulnerable streams in the BW to climate change for potential prioritization in conservation plans.</p>


2016 ◽  
Vol 829 (2) ◽  
pp. 115 ◽  
Author(s):  
João M. Mendonça ◽  
Simon L. Grimm ◽  
Luc Grosheintz ◽  
Kevin Heng

2018 ◽  
Vol 215 (3) ◽  
pp. 1523-1529
Author(s):  
Peter Olson ◽  
Maylis Landeau ◽  
Evan Reynolds

SUMMARY A fundamental assumption in palaeomagnetism is that the geomagnetic field closely approximates a geocentric axial dipole in time average. Here we use numerical dynamos driven by heterogeneous core–mantle boundary heat flux from a mantle global circulation model to demonstrate how mantle convection produces true dipole wander, rotation of the geomagnetic dipole on geologic timescales. Our heterogeneous mantle-driven dynamos show a dipole rotation about a near-equatorial axis in response to the transition in lower mantle heterogeneity from a highly asymmetric pattern at the time of supercontinent Pangea to a more symmetric pattern today. This predicted dipole rotation overlaps with a palaeomagnetically inferred rotation in the opposite direction and suggests that some events previously interpreted as true polar wander also include true dipole wander.


Radiocarbon ◽  
1990 ◽  
Vol 32 (1) ◽  
pp. 37-58 ◽  
Author(s):  
M R Manning ◽  
D C Lowe ◽  
W H Melhuish ◽  
R J Sparks ◽  
Gavin Wallace ◽  
...  

14C measured in trace gases in clean air helps to determine the sources of such gases, their long-range transport in the atmosphere, and their exchange with other carbon cycle reservoirs. In order to separate sources, transport and exchange, it is necessary to interpret measurements using models of these processes. We present atmospheric 14CO2 measurements made in New Zealand since 1954 and at various Pacific Ocean sites for shorter periods. We analyze these for latitudinal and seasonal variation, the latter being consistent with a seasonally varying exchange rate between the stratosphere and troposphere. The observed seasonal cycle does not agree with that predicted by a zonally averaged global circulation model. We discuss recent accelerator mass spectrometry measurements of atmospheric 14CH4 and the problems involved in determining the fossil fuel methane source. Current data imply a fossil carbon contribution of ca 25%, and the major sources of uncertainty in this number are the uncertainty in the nuclear power source of 14CH4, and in the measured value for δ14C in atmospheric methane.


Sign in / Sign up

Export Citation Format

Share Document