Spatial pattern evaluation of remote-sensing evapotranspiration products using surface water-balance approach: application of geostatistical functions for quantifying drivers and dependence structures of ET data

Author(s):  
Mohsen Soltani ◽  
Simon Stisen ◽  
Julian Koch

<p>Remote sensing-based RS observations can provide evapotranspiration ET estimations across temporal and spatial scales. In this study, two MODIS-based global ET, namely MODIS16 and two-source energy balance model TSEB are compared and evaluated using the surface water-balance WB ET method at monthly time-scale with 1 km spatial resolution for the entire land phase of Denmark (42,087 km<sup>2</sup>). Then, the drivers and underlying dependence structures of ET datasets against land-atmosphere parameters are appropriately quantified using a linear-based multivariate principal component analysis PCA –and nonlinear-based bivariate empirical Copula analysis. For calculation of the surface WB ET method, in addition to the standard WB ET procedure (ET = precipitation P – discharge Q), we introduce a novel modification of standard WB method, which considers a groundwater exchange term. Here, modelled net intercatchment groundwater flow (GW_net) is also included in the ET calculation (ET = P – Q + GW_net); where the simulations are done by the national water resources model of Denmark (the DK-model) executed in the physically-based distributed MIKE-SHE hydrologic modelling code. The differences between the two WB methods are presented and discussed in detail to highlight the importance of considering GW data when investigating water-budget of small catchments. Our analysis will also be extended to compare ET datasets at different spatial scales (catchment size), aiming at further exploring the performance and ET uncertainties of remote sensing-based models. Our results indicate that the novel approach of adding GW-data in WB ET calculation results in a more trustworthy WB ET spatial pattern. This is especially relevant for smaller catchments where GW-exchange can be significant. Large discrepancy is observed in TSEB/MODIS16 ET compared to WB ET spatial pattern at the national scale; however, ∆ET values are regionally small for most watersheds (~60% of all). Also, catchment-based analysis highlights that RS/WB ∆ET decreases from <100km<sup>2</sup> to >200km<sup>2</sup> watersheds, and about 56% (67%) of all catchments have ∆ET ±50 mm/year for TSEB (MODIS16). PCA-based analysis revealed that each ET dataset is largely driven by different parameters. However, land surface temperature LST and solar radiation Rs are found as most relevant driving variables. In addition, Copula-based analysis captures a nonlinear structure of the joint relationship with multiple densities amongst ET products and the parameters, showing a complex underlying dependence structure. Overall, both PCA and Copula analyses indicate that WB and MODIS16 ET products represent a closer spatial pattern compared to TSEB. This study will help improve standard WB ET estimate method and contribute to deeper understanding the inter-correlations and real complex relationships between ET datasets and the nature of land-atmosphere parameters.</p>

2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Mohsen Soltani ◽  
Julian Koch ◽  
Simon Stisen

This study aims to improve the standard water balance evapotranspiration (WB ET) estimate, which is typically used as benchmark data for catchment-scale ET estimation, by accounting for net intercatchment groundwater flow in the ET calculation. Using the modified WB ET approach, we examine errors and shortcomings associated with the long-term annual mean (2002–2014) spatial patterns of three remote-sensing (RS) MODIS-based ET products from MODIS16, PML_V2, and TSEB algorithms at 1 km spatial resolution over Denmark, as a test case for small-scale, energy-limited regions. Our results indicate that the novel approach of adding groundwater net in water balance ET calculation results in a more trustworthy ET spatial pattern. This is especially relevant for smaller catchments where groundwater net can be a significant component of the catchment water balance. Nevertheless, large discrepancies are observed both amongst RS ET datasets and compared to modified water balance ET spatial pattern at the national scale; however, catchment-scale analysis highlights that difference in RS ET and WB ET decreases with increasing catchment size and that 90%, 87%, and 93% of all catchments have ∆ET < ±150 mm/year for MODIS16, PML_V2, and TSEB, respectively. In addition, Copula approach captures a nonlinear structure of the joint relationship with multiple densities amongst the RS/WB ET products, showing a complex dependence structure (correlation); however, among the three RS ET datasets, MODIS16 ET shows a closer spatial pattern to the modified WB ET, as identified by a principal component analysis also. This study will help improve the water balance approach by the addition of groundwater net in the ET estimation and contribute to better understand the true correlations amongst RS/WB ET products especially over energy-limited environments.


2014 ◽  
Vol 11 (3) ◽  
pp. 2933-2965 ◽  
Author(s):  
P. K. Weiskel ◽  
D. M. Wolock ◽  
P. J. Zarriello ◽  
R. M. Vogel ◽  
S. B. Levin ◽  
...  

Abstract. Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-sub-humid, semi-arid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA), using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes, but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and re-interprets the green-blue water perspective now gaining international acceptance. Implications of the new framework for hydrologic assessment and classification are explored.


2003 ◽  
Vol 7 (6) ◽  
pp. 862-876 ◽  
Author(s):  
H. Bach ◽  
M. Braun ◽  
G. Lampart ◽  
W. Mauser

Abstract. Physically-based water balance models require a realistic parameterisation of land surface characteristics of a catchment. Alpine areas are very complex with strong topographically-induced gradients of environmental conditions, which makes the hydrological parameterisation of Alpine catchments difficult. Within a few kilometres the water balance of a region (mountain peak or valley) can differ completely. Hence, remote sensing is invaluable for retrieving hydrologically relevant land surface parameters. The assimilation of the retrieved information into the water balance model PROMET is demonstrated for the Toce basin in Piemonte/Northern Italy. In addition to land use, albedos and leaf area indices were derived from LANDSAT-TM imagery. Runoff, modelled by a water balance approach, agreed well with observations without calibration of the hydrological model. Keywords: PROMET, fuzzy logic based land use classification, albedo, leaf area index


2014 ◽  
Vol 18 (10) ◽  
pp. 3855-3872 ◽  
Author(s):  
P. K. Weiskel ◽  
D. M. Wolock ◽  
P. J. Zarriello ◽  
R. M. Vogel ◽  
S. B. Levin ◽  
...  

Abstract. Runoff-based indicators of terrestrial water availability are appropriate for humid regions, but have tended to limit our basic hydrologic understanding of drylands – the dry-subhumid, semiarid, and arid regions which presently cover nearly half of the global land surface. In response, we introduce an indicator framework that gives equal weight to humid and dryland regions, accounting fully for both vertical (precipitation + evapotranspiration) and horizontal (groundwater + surface-water) components of the hydrologic cycle in any given location – as well as fluxes into and out of landscape storage. We apply the framework to a diverse hydroclimatic region (the conterminous USA) using a distributed water-balance model consisting of 53 400 networked landscape hydrologic units. Our model simulations indicate that about 21% of the conterminous USA either generated no runoff or consumed runoff from upgradient sources on a mean-annual basis during the 20th century. Vertical fluxes exceeded horizontal fluxes across 76% of the conterminous area. Long-term-average total water availability (TWA) during the 20th century, defined here as the total influx to a landscape hydrologic unit from precipitation, groundwater, and surface water, varied spatially by about 400 000-fold, a range of variation ~100 times larger than that for mean-annual runoff across the same area. The framework includes but is not limited to classical, runoff-based approaches to water-resource assessment. It also incorporates and reinterprets the green- and blue-water perspective now gaining international acceptance. Implications of the new framework for several areas of contemporary hydrology are explored, and the data requirements of the approach are discussed in relation to the increasing availability of gridded global climate, land-surface, and hydrologic data sets.


2011 ◽  
Vol 15 (1) ◽  
pp. 223-239 ◽  
Author(s):  
M. C. Anderson ◽  
W. P. Kustas ◽  
J. M. Norman ◽  
C. R. Hain ◽  
J. R. Mecikalski ◽  
...  

Abstract. Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection) are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa and other continents with geostationary satellite coverage.


2010 ◽  
Vol 7 (4) ◽  
pp. 5957-5990 ◽  
Author(s):  
M. C. Anderson ◽  
W. P. Kustas ◽  
J. M. Norman ◽  
C. R. Hain ◽  
J. R. Mecikalski ◽  
...  

Abstract. Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (soil moisture, advection, air temperature) are affecting plant stress. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5–10 km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI), spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions of 30 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe and, Africa and other continents with geostationary satellite coverage.


2019 ◽  
Vol 35 (9) ◽  
pp. 954-975
Author(s):  
Olutoyin Adeola Fashae ◽  
Rotimi Oluseyi Obateru ◽  
Adeyemi Oludapo Olusola

2006 ◽  
Vol 3 (4) ◽  
pp. 1851-1877 ◽  
Author(s):  
M. A. H. Shamseddin ◽  
T. Hata ◽  
A. Tada ◽  
M. A. Bashir ◽  
T. Tanakamaru

Abstract. In spite of the importance of Sudd (swamp) area estimation for any hydrological project in the southern Sudan, yet, no abroad agreement on its size, due to the inaccessibility and civil war. In this study, remote sensing techniques are used to estimate the Bahr El-Jebel flooded area. MODIS-Terra (Moderate Resolution Imaging Spectroradiometer) level 1B satellite images are analyzed on basis of the unsupervised classification method. The annual mean of Bahr El-Jebel flooded area has been estimated at 20 400 km2, which is 96% of Sutcliffe and Park (1999) estimation on basis of water balance model prediction. And only, 53% of SEBAL (Surface Energy Balance Algorithm for Land) model estimation. The accuracy of the classification is 71%. The study also found the swelling and shrinkage pattern of Sudd area throughout the year is following the trends of Lake Victoria outflow patterns. The study has used two evaporation methods (open water evaporation and SEBAL model) to estimate the annual storage volume of Bahr El-Jebel River by using a water balance model. Also the storage changes due time is generated throughout the study years.


Sign in / Sign up

Export Citation Format

Share Document