Evaluation of frontal precipitation in CMIP6 models

Author(s):  
Jennifer Catto ◽  
Matthew Priestley

<p>Process-based evaluation of precipitation is key to understanding climate model biases. It is vital to ensure that precipitation is produced in the model due to the correct mechanisms (or weather system). Atmospheric fronts have been shown to be responsible for a large proportion of total and extreme precipitation in the mid-latitudes. Therefore, representation of precipitation associated with fronts in climate models needs to be tested.</p><p>We applied objective front identification to the historical simulations from the CMIP6 archive and linked them with their 6-hourly precipitation accumulations. We compared the model outputs to the results from observationally constrained datasets. The fronts were identified from ERA5 and linked to precipitation estimates from sources including ERA5, and satellite products. This allows the precipitation errors to be decomposed into components associated with the frequency and intensity of frontal and non-frontal precipitation.</p><p>The diagnostics from the analysis have been made into metrics which could be used to evaluate model performance and aid in focussing future model development.</p>

2017 ◽  
Vol 18 (9) ◽  
pp. 2313-2330 ◽  
Author(s):  
Phu Nguyen ◽  
Andrea Thorstensen ◽  
Soroosh Sorooshian ◽  
Qian Zhu ◽  
Hoang Tran ◽  
...  

Abstract The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5 models. This work uniquely defines different study regions by partitioning global land areas into 25 groups based on continent and climate zone type. Results show that model performance in warm temperate and equatorial regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and correlation, suggesting that these regions may benefit from weighted model averaging schemes or model selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid) exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–climate zone defined group is provided as a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.


2013 ◽  
Vol 17 (11) ◽  
pp. 4323-4337 ◽  
Author(s):  
M. A. Sunyer ◽  
H. J. D. Sørup ◽  
O. B. Christensen ◽  
H. Madsen ◽  
D. Rosbjerg ◽  
...  

Abstract. In recent years, there has been an increase in the number of climate studies addressing changes in extreme precipitation. A common step in these studies involves the assessment of the climate model performance. This is often measured by comparing climate model output with observational data. In the majority of such studies the characteristics and uncertainties of the observational data are neglected. This study addresses the influence of using different observational data sets to assess the climate model performance. Four different data sets covering Denmark using different gauge systems and comprising both networks of point measurements and gridded data sets are considered. Additionally, the influence of using different performance indices and metrics is addressed. A set of indices ranging from mean to extreme precipitation properties is calculated for all the data sets. For each of the observational data sets, the regional climate models (RCMs) are ranked according to their performance using two different metrics. These are based on the error in representing the indices and the spatial pattern. In comparison to the mean, extreme precipitation indices are highly dependent on the spatial resolution of the observations. The spatial pattern also shows differences between the observational data sets. These differences have a clear impact on the ranking of the climate models, which is highly dependent on the observational data set, the index and the metric used. The results highlight the need to be aware of the properties of observational data chosen in order to avoid overconfident and misleading conclusions with respect to climate model performance.


2013 ◽  
Vol 10 (6) ◽  
pp. 7003-7043 ◽  
Author(s):  
M. A. Sunyer ◽  
H. J. D. Sørup ◽  
O. B. Christensen ◽  
H. Madsen ◽  
D. Rosbjerg ◽  
...  

Abstract. In recent years, there has been an increase in the number of climate studies addressing changes in extreme precipitation. A common step in these studies involves the assessment of the climate model performance. This is often measured by comparing climate model output with observational data. In the majority of such studies the characteristics and uncertainties of the observational data are neglected. This study addresses the influence of using different observational datasets to assess the climate model performance. Four different datasets covering Denmark using different gauge systems and comprising both networks of point measurements and gridded datasets are considered. Additionally, the influence of using different performance indices and metrics is addressed. A set of indices ranging from mean to extreme precipitation properties is calculated for all the datasets. For each of the observational datasets, the RCMs are ranked according to their performance using two different metrics. These are based on the error in representing the indices and the spatial correlation. In comparison to the mean, extreme precipitation indices are highly dependent on the spatial resolution of the observations. The spatial correlation also shows differences between the observational datasets. These differences have a clear impact on the ranking of the climate models, which is highly dependent on the observational dataset, the index and the metric used. The results highlight the need to be aware of the properties of observational data chosen in order to avoid overconfident and misleading conclusions with respect to climate model performance.


Author(s):  
Michael Wehner ◽  
Jiwoo Lee ◽  
Mark Risser ◽  
Paul Ullrich ◽  
Peter Gleckler ◽  
...  

We examine the resolution dependence of errors in extreme sub-daily precipitation in available high-resolution climate models. We find that simulated extreme precipitation increases as horizontal resolution increases but that appropriately constructed model skill metrics do not significantly change. We find little evidence that simulated extreme winter or summer storm processes significantly improve with the resolution because the model performance changes identified are consistent with expectations from scale dependence arguments alone. We also discuss the implications of these scale-dependent limitations on the interpretation of simulated extreme precipitation. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


2020 ◽  
Vol 33 (5) ◽  
pp. 1915-1933 ◽  
Author(s):  
Jesús Vergara-Temprado ◽  
Nikolina Ban ◽  
Davide Panosetti ◽  
Linda Schlemmer ◽  
Christoph Schär

AbstractThe “gray zone” of convection is defined as the range of horizontal grid-space resolutions at which convective processes are partially but not fully resolved explicitly by the model dynamics (typically estimated from a few kilometers to a few hundred meters). The representation of convection at these scales is challenging, as both parameterizing convective processes or relying on the model dynamics to resolve them might cause systematic model biases. Here, a regional climate model over a large European domain is used to study model biases when either using parameterizations of deep and shallow convection or representing convection explicitly. For this purpose, year-long simulations at horizontal resolutions between 50- and 2.2-km grid spacing are performed and evaluated with datasets of precipitation, surface temperature, and top-of-the-atmosphere radiation over Europe. While simulations with parameterized convection seem more favorable than using explicit convection at around 50-km resolution, at higher resolutions (grid spacing ≤ 25 km) models tend to perform similarly or even better for certain model skills when deep convection is turned off. At these finer scales, the representation of deep convection has a larger effect in model performance than changes in resolution when looking at hourly precipitation statistics and the representation of the diurnal cycle, especially over nonorographic regions. The shortwave net radiative balance at the top of the atmosphere is the variable most strongly affected by resolution changes, due to the better representation of cloud dynamical processes at higher resolutions. These results suggest that an explicit representation of convection may be beneficial in representing some aspects of climate over Europe at much coarser resolutions than previously thought, thereby reducing some of the uncertainties derived from parameterizing deep convection.


2021 ◽  
Author(s):  
Christian Zeman ◽  
Christoph Schär

<p>Since their first operational application in the 1950s, atmospheric numerical models have become essential tools in weather and climate prediction. As such, they are a constant subject to changes, thanks to advances in computer systems, numerical methods, and the ever increasing knowledge about the atmosphere of Earth. Many of the changes in today's models relate to seemingly unsuspicious modifications, associated with minor code rearrangements, changes in hardware infrastructure, or software upgrades. Such changes are meant to preserve the model formulation, yet the verification of such changes is challenged by the chaotic nature of our atmosphere - any small change, even rounding errors, can have a big impact on individual simulations. Overall this represents a serious challenge to a consistent model development and maintenance framework.</p><p>Here we propose a new methodology for quantifying and verifying the impacts of minor atmospheric model changes, or its underlying hardware/software system, by using ensemble simulations in combination with a statistical hypothesis test. The methodology can assess effects of model changes on almost any output variable over time, and can also be used with different hypothesis tests.</p><p>We present first applications of the methodology with the regional weather and climate model COSMO. The changes considered include a major system upgrade of the supercomputer used, the change from double to single precision floating-point representation, changes in the update frequency of the lateral boundary conditions, and tiny changes to selected model parameters. While providing very robust results, the methodology also shows a large sensitivity to more significant model changes, making it a good candidate for an automated tool to guarantee model consistency in the development cycle.</p>


2018 ◽  
Vol 32 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Sicheng He ◽  
Jing Yang ◽  
Qing Bao ◽  
Lei Wang ◽  
Bin Wang

AbstractRealistic reproduction of historical extreme precipitation has been challenging for both reanalysis and global climate model (GCM) simulations. This work assessed the fidelities of the combined gridded observational datasets, reanalysis datasets, and GCMs [CMIP5 and the Chinese Academy of Sciences Flexible Global Ocean–Atmospheric Land System Model–Finite-Volume Atmospheric Model, version 2 (FGOALS-f2)] in representing extreme precipitation over East China. The assessment used 552 stations’ rain gauge data as ground truth and focused on the probability distribution function of daily precipitation and spatial structure of extreme precipitation days. The TRMM observation displays similar rainfall intensity–frequency distributions as the stations. However, three combined gridded observational datasets, four reanalysis datasets, and most of the CMIP5 models cannot capture extreme precipitation exceeding 150 mm day−1, and all underestimate extreme precipitation frequency. The observed spatial distribution of extreme precipitation exhibits two maximum centers, located over the lower-middle reach of Yangtze River basin and the deep South China region, respectively. Combined gridded observations and JRA-55 capture these two centers, but ERA-Interim, MERRA, and CFSR and almost all CMIP5 models fail to capture them. The percentage of extreme rainfall in the total rainfall amount is generally underestimated by 25%–75% in all CMIP5 models. Higher-resolution models tend to have better performance, and physical parameterization may be crucial for simulating correct extreme precipitation. The performances are significantly improved in the newly released FGOALS-f2 as a result of increased resolution and a more realistic simulation of moisture and heating profiles. This work pinpoints the common biases in the combined gridded observational datasets and reanalysis datasets and helps to improve models’ simulation of extreme precipitation, which is critically important for reliable projection of future changes in extreme precipitation.


2018 ◽  
Vol 31 (16) ◽  
pp. 6591-6610 ◽  
Author(s):  
Martin Aleksandrov Ivanov ◽  
Jürg Luterbacher ◽  
Sven Kotlarski

Climate change impact research and risk assessment require accurate estimates of the climate change signal (CCS). Raw climate model data include systematic biases that affect the CCS of high-impact variables such as daily precipitation and wind speed. This paper presents a novel, general, and extensible analytical theory of the effect of these biases on the CCS of the distribution mean and quantiles. The theory reveals that misrepresented model intensities and probability of nonzero (positive) events have the potential to distort raw model CCS estimates. We test the analytical description in a challenging application of bias correction and downscaling to daily precipitation over alpine terrain, where the output of 15 regional climate models (RCMs) is reduced to local weather stations. The theoretically predicted CCS modification well approximates the modification by the bias correction method, even for the station–RCM combinations with the largest absolute modifications. These results demonstrate that the CCS modification by bias correction is a direct consequence of removing model biases. Therefore, provided that application of intensity-dependent bias correction is scientifically appropriate, the CCS modification should be a desirable effect. The analytical theory can be used as a tool to 1) detect model biases with high potential to distort the CCS and 2) efficiently generate novel, improved CCS datasets. The latter are highly relevant for the development of appropriate climate change adaptation, mitigation, and resilience strategies. Future research needs to focus on developing process-based bias corrections that depend on simulated intensities rather than preserving the raw model CCS.


2020 ◽  
Author(s):  
Katarina Kosovelj ◽  
Nedjeljka Žagar

<p>The assessment of climate model biases in an important part of their validation, in particular with respect to the application of the outputs of global models as lateral boundaries in regional climate models. The coupled nature of thermodynamics and circulation asks for their simultaneous treatment in the model bias analysis. This can be achieved by applying the normal-mode decomposition of model outputs and reanalysis that provides biases associated with the two dominant atmospheric regimes, the Rossby (or balanced) and inertia-gravity (or unbalanced) regime. The regime decomposition provides the spectrum of bias in terms of zonal wavenumbers, meridional modes and vertical modes. This can be especially useful in the tropics, where the Rossby and IG regimes are difficult to separate and biases in simulated circulation, just like the circulation itself, have global impacts. </p><p>The method is applied to the intermediate complexity climate model SPEEDY. Fifty-year long simulations  are performed in AMIP-mode with the prescribed SST. Biases are computed with respect to ERA-20C  upscaled to the resolution of SPEEDY (T30L8). We evaluate biases both in modal and physical space and study regional biases associated with the  balanced and unbalanced components of circulation. This work thus expands the results presented by Žagar et al. (2019, Clim. Dyn.) to the two regimes-related bias analysis..</p><p>The results show that the bias is strongly scale dependent, just like the simulated variability. The largest biases in SPEEDY are at planetary scales (waveumbers 0-3). Biases associated with the extratropical Rossby modes explain more than the half of bias variance. The Rossby n=1 mode is a single mode with the largest bias variance in balanced circulation whereas the Kelvin wave contains the largest bias among the IG modes. These biases are shown to originate mostly in the stratosphere and the upper-troposphere westerlies in the Southern hemisphere. </p>


2020 ◽  
Author(s):  
Andrew Williams ◽  
Paul O'Gorman

<p>Changes in extreme precipitation are amongst the most impactful consequences of global warming, with potential effects ranging from increased flood risk and landslides to crop failures and impacts on ecosystems. Thus, understanding historical and future changes in extreme precipitation is not only important from a scientific perspective, but also has direct societal relevance.</p><p>However, while most current research has focused on annual precipitation extremes and their response to warming, it has recently been noted that climate model projections show a distinct seasonality to future changes in extreme precipitation. In particular, CMIP5 models suggest that over Northern Hemisphere (NH) land the summer response is weaker than the winter response in terms of percentage changes.</p><p>Here we investigate changes in seasonal precipitation extremes using observations and simulations with coupled climate models. First, we analyse observed trends from the Hadley Centre’s global climate extremes dataset (HadEX2) to investigate to what extent there is already a difference between summer and winter trends over NH land. Second, we use 40 ensemble members from the CESM Large Ensemble to characterize the role played by internal variability in trends over the historical period. Lastly, we use CMIP5 simulations to explore the possibility of a link between the seasonality of changes in precipitation extremes and decreases in surface relative humidity over land.</p>


Sign in / Sign up

Export Citation Format

Share Document