Mesospheric Gravity Wave Momentum Flux Generated by a Thunderstorm System

Author(s):  
Steven Smith ◽  
Martin Setvák ◽  
Yuri Yuri Beletsky ◽  
Jeffrey Baumgardner ◽  
Michael Mendillo

<p>An extensive and bright mesospheric gravity wave event occurred over the El Leoncito Observatory, Argentina (31.8<sup>º</sup>S, 69.3<sup>º</sup>W) during the night of 17–18 March 2016. The wave structures were exhibited in the nightglow and were easily visible to naked eye observers, a phenomenon known as a Bright Night. Analysis of a combination of ground-based and space-based data sources indicated that the event was generated by a large thunderstorm complex located to the south-east of the observation site. The event was associated with very large values of wave momentum flux: 150–300 m<sup>2</sup>s<sup>-2</sup>, which is over an order of magnitude larger than typical. The routine seasonality of such thunderstorm systems suggests that they may contribute significantly to the role of upward coupling to the upper atmosphere and ionosphere. </p>

1997 ◽  
Vol 125 (6) ◽  
pp. 1185-1211 ◽  
Author(s):  
Michael L. Kaplan ◽  
Steven E. Koch ◽  
Yuh-Lang Lin ◽  
Ronald P. Weglarz ◽  
Robert A. Rozumalski

SOLA ◽  
2005 ◽  
Vol 1 ◽  
pp. 189-192 ◽  
Author(s):  
Shingo Watanabe ◽  
Tatsuya Nagashima ◽  
Seita Emori

2017 ◽  
Vol 44 (2) ◽  
pp. 1182-1191 ◽  
Author(s):  
R. J. Wit ◽  
D. Janches ◽  
D. C. Fritts ◽  
R. G. Stockwell ◽  
L. Coy

2010 ◽  
Vol 67 (10) ◽  
pp. 3208-3225 ◽  
Author(s):  
Todd P. Lane ◽  
Mitchell W. Moncrieff

Abstract Tropical convection is inherently multiscalar, involving complex fields of clouds and various regimes of convective organization ranging from small disorganized cumulus up to large organized convective clusters. In addition to being a crucial component of the atmospheric water cycle and the global heat budget, tropical convection induces vertical fluxes of horizontal momentum. There are two main contributions to the momentum transport. The first resides entirely in the troposphere and is due to ascent, descent, and organized circulations associated with precipitating convective systems. The second resides in the troposphere, stratosphere, and farther aloft and is caused by vertically propagating gravity waves. Both the convective momentum transport and the gravity wave momentum flux must be parameterized in general circulation models; yet in existing parameterizations, these two processes are treated independently. This paper examines the relationship between the convective momentum transport and convectively generated gravity wave momentum flux by utilizing idealized simulations of multiscale tropical convection in different wind shear conditions. The simulations produce convective systems with a variety of regimes of convective organization and therefore different convective momentum transport properties and gravity wave spectra. A number of important connections are identified, including a consistency in the sign of the momentum transports in the lower troposphere and stratosphere that is linked to the generation of gravity waves by tilted convective structures. These results elucidate important relationships between the convective momentum transport and the gravity wave momentum flux that will be useful for interlinking their parameterization in the future.


2018 ◽  
Vol 11 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Catrin I. Meyer ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
Quang Thai Trinh ◽  
M. Joan Alexander

Abstract. We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60∘ S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.


Radio Science ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 727-748 ◽  
Author(s):  
J. L. Chang ◽  
S. K. Avery ◽  
A. C. Riddle ◽  
S. E. Palo ◽  
K. S. Gage

Sign in / Sign up

Export Citation Format

Share Document