Environmental plantings’ influence on microbial attributes and soil properties in Australia.

Author(s):  
Apsara Amarasinghe ◽  
Oliver G G Knox ◽  
Christine Fyfe ◽  
Lisa A Lobry de Bruyn ◽  
Brian R Wilson

<p>Native trees and shrubs planted in large contiguous blocks (environmental plantings) have been established on agricultural lands in Australia to reinstate ecosystem functions and protect the biodiversity that has been degraded by agricultural activities. Limited work exists on the extent of the ecosystem recovery, but the assessment of microbial attributes (i.e. microbial activity and functional diversity) in these plantings may provide an indication of status. This study investigated how environmental plantings, and time since their establishment, affects aforementioned soil microbial attributes,  to determine if the recovery to conditions found under extant remnant woodland were achievable. We compared changes in microbial functional diversity and activity along with total organic carbon (TOC), total nitrogen (TN), extractable phosphorous (P), soil pH, and electrical conductivity (EC) between environmental plantings established for 17 and 27 years, a paired adjacent pasture, and nearby remnant native woodland at Gunnedah, New South Wales. The results indicated that microbial activity under the trees, compared to that of pasture, increased by 20%–93% with increasing tree age. The ordination distance of microbial functional diversity declined between environmental plantings and remnant woodland as the age of the environmental planting increased, which was indicative of microbial functions becoming similar to that in the remnant vegetation with time. Soil P levels under trees were significantly higher compared to pasture and also increased with increasing planting age. However, TOC and TN levels under environmental plantings remained similar to pasture. These results suggest that microbial attributes and soil nutrient status of the investigated environmental plantings were on a trajectory of change from that of the pasture systems toward that of the remnant vegetation, but that full ecosystem recovery had not yet been achieved, even after 27 years.</p><p>Keywords: Environmental plantings, Microbial activity, Microbial functional diversity, Soil organic carbon, Soil nutrients</p>

2004 ◽  
Vol 84 (4) ◽  
pp. 411-419 ◽  
Author(s):  
N. Z. Lupwayi ◽  
G. W. Clayton ◽  
J. T. O’Donovan ◽  
K. N. Harker ◽  
T. K. Turkington ◽  
...  

Field experiments were conducted to correlate decomposition of red clover (Trifolium pratense) green manure (GM), field pea (Pisum sativum), canola (Brassica rapa) and wheat (Triticum aestivum) residues, and soil organic C (SOC), under zero tillage and conventional tillage, with soil microbial biomass C (MBC), bacterial functional diversity and microbial activity (CO2 evolution). A greenhouse experiment was also conducted to relate crop residue quality to soil microbial characteristics. Zero tillage increas ed MBC only in the 0- to 5-cm soil layer. Soil MBC decreased more with soil depth than either microbial diversity or total SOC. Legume GM residues induced greater initial CO2 evolution than the other residues. This means that results that do not include the initial flush of microbial activity, e.g., by sampling only in the season(s) following residue placement, probably underestimate gas evolution from legume crop residues. Residue N, P and K contents were positively correlated with microbial functional diversity and activity, which were positively correlated with crop residue decomposition. Therefore, microbial functional diversity and activity were good indicators of microbial decomposition processes. Residue C/N and C/P ratios (i.e., high C content) were positively correlated with MBC, which was positively correlated with SOC. Therefore, soil MBC was a good indicator of soil quality (soil organic matter content). Key words: Biological soil quality, crop residues, crop rotation, microbial activity, microbial biomass, microbial diversity


2021 ◽  
Vol 41 (7) ◽  
Author(s):  
王利彦,周国娜,朱新玉,高宝嘉,许会道 WANG Liyan

Author(s):  
Nor Ayshah Alia Ali Hassan ◽  
Halimi Mohd Saud

Microorganisms in the rhizosphere possess numerous metabolic activities. The addition of inorganic substance such as fertilizer could affect the microbial functional diversity. This study was conducted to evaluate the effect of different rate of NPK fertilizer on microbial functional diversity in the rhizosphere of local aerobic rice variety. Aerobic rice variety MRIA 1 was used in this study. Peat was taken from a non-agricultural area in Klang, Malaysia. The effect of fertilizer rate was determined with 4 different rates (C = non-fertilized; T1 = 100 kg/ha NPK; T2 = 200 kg/ha NPK; T3 = 400 kg/ha NPK). Microbial functional diversity was performed using Biolog™ Ecoplate System and measured by microbial activities, such as average well color development (AWCD), species richness (R), Shannon-Weaver index (H index) and species evenness (E). As a result, microbial activity increased to 5.7% when fertilizer applied at T2, while fertilizer rate at T3 increased species richness by 3.2%. However, addition of fertilizer did not affect the H index while species evenness slightly decreased by 1.1% when applied at T3. Bacteria population was reduced when fertilizer added at T1. Fertilizer addition to the peat soil decreased the culturable population of nitrogen-fixing microbes while no effect was found on culturable fungal, actinomycetes and phosphate-solubilizing microbe population. Microbes in T2 utilized many carbon sources. Variation in carbon sources used by microbes was found when fertilizer was applied at different rates. D-cellobiose, pyruvic acid methyl ester, and L-serine were the carbon sources that influenced the microbial function in soil. It is concluded that fertilizer has an effect on microbial functional diversity in the peat rhizosphere of local aerobic variety. The recommended fertilizer rate (T2) increased the microbial activity while high fertilizer rate (T3) increased species richness and decreased species evenness.


2019 ◽  
Vol 49 (10) ◽  
pp. 1207-1218 ◽  
Author(s):  
Clay Arango ◽  
Alexandra Ponette-González ◽  
Izak Neziri ◽  
Jennifer Bailey

Western spruce budworm (Choristoneura freemani Razowski, 2008) is the most widely distributed insect herbivore in western North American coniferous forests. By partially or completely defoliating tree crowns, budworms influence fluxes of water, nutrients, and organic carbon from forest canopies to soils and, in turn, soil chemistry. To quantify these effects, throughfall water, inorganic nitrogen (N), phosphorus (P), and dissolved organic carbon (DOC) concentrations, as well as fluxes and soil N and P concentrations, were measured in coniferous forest sites with high and background levels of budworm herbivory. Throughfall N and P concentrations and fluxes increased at sites with high budworm levels during and (or) immediately after larval-stage budworm feeding, indicating reduced uptake and (or) greater leaching from canopies as a result of budworm activity. Annual throughfall N fluxes (<67–71 g N·ha−1·year−1) and soil N concentrations were low regardless of herbivory level. In contrast, throughfall P was considerably greater at sites with high herbivory levels (2174 g P·ha−1·year−1) compared with those with background levels (1357 g P·ha−1·year−1), and this was reflected in nearly threefold higher soil P concentrations at sites with high budworm levels. Our findings suggest that by altering throughfall chemistry and soil N:P, budworms could influence elemental export from watersheds.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 357 ◽  
Author(s):  
Weifeng Wu ◽  
Haiping Lin ◽  
Weijun Fu ◽  
Petri Penttinen ◽  
Yongfu Li ◽  
...  

To assess the effects of long-term intensive management on soil carbon cycle and microbial functional diversity, we sampled soil in Chinese hickory (Carya cathayensis Sarg.) stands managed intensively for 5, 10, 15, and 20 years, and in reference Chinese hickory–broad-leaved mixed forest (NMF) stands. We analyzed soil total organic carbon (TOC), microbial biomass carbon (MBC), and water-soluble organic carbon (WSOC) contents, applied 13C-nuclear magnetic resonance analysis for structural analysis, and determined microbial carbon source usage. TOC, MBC, and WSOC contents and the MBC to TOC ratios were lower in the intensively managed stands than in the NMF stands. The organic carbon pool in the stands managed intensively for twenty years was more stable, indicating that the easily degraded compounds had been decomposed. Diversity and evenness in carbon source usage by the microbial communities were lower in the stands managed intensively for 15 and 20 years. Based on carbon source usage, the longer the management time, the less similar the samples from the monospecific Chinese hickory stands were with the NMF samples, indicating that the microbial community compositions became more different with increased management time. The results call for changes in the management of the hickory stands to increase the soil carbon content and restore microbial diversity.


Author(s):  
Diego dos Santos ◽  
Fernando Joner ◽  
Bill Shipley ◽  
Marinice Teleginski ◽  
Renata Rodrigues Lucas ◽  
...  

2021 ◽  
Vol 154 ◽  
pp. 108143
Author(s):  
Shun Han ◽  
Manuel Delgado-Baquerizo ◽  
Xuesong Luo ◽  
Yurong Liu ◽  
Joy D. Van Nostrand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document