Crop functional diversity drives multiple ecosystem functions during early agroforestry succession

Author(s):  
Diego dos Santos ◽  
Fernando Joner ◽  
Bill Shipley ◽  
Marinice Teleginski ◽  
Renata Rodrigues Lucas ◽  
...  
2021 ◽  
Vol 4 ◽  
Author(s):  
Sandra Cristina Müller ◽  
Rodrigo Scarton Bergamin ◽  
Kauane Maiara Bordin ◽  
Joice Klipel ◽  
Milena Fermina Rosenfield

Secondary forests originate from natural regeneration after fallow (succession) or restoration. Species assembly in these communities, which can affect ecosystem functions and successional trajectories, is very unpredictable. Trait-based trajectories can shed light on the recovery of ecosystem functions and enable predictions of how the regenerating communities will change with forest age. Regeneration communities are affected by initial conditions and also by canopy structure and functional traits that alter dispersers' attractiveness and coexistence mechanisms. Here we evaluated how community functional traits change over time and tested if functional diversity and composition of the established canopy, as well as the structure of the canopy and forest age, influence the functional structure of regenerating tree communities when compared to their reference forests. For this, we calculated dissimilarity in trait composition (community-weighted means) and in functional diversity of regenerating communities of each succession/restoration stand, using the tree stratum of nearby mature forests as baseline values. Functional trait information comprises leaf, wood density, and reproductive traits from tree species. Our community data contain information from natural successional forests and restoration sites, in the South-Brazilian Atlantic Forest. Predictor variables of functional dissimilarities were forest age, canopy structural variables, canopy functional composition, and functional diversity. Results showed leaf traits (leaf dry matter content, leaf nitrogen content, leaf nitrogen-phosphorus ratio) and seed mass varying with forest age. Canopy functional composition based on leaf traits and total basal area significantly predicted multiple trait functional dissimilarity between the regeneration component of secondary forests and their reference community values. Dissimilarity increased when the canopy was composed of species with more acquisitive traits. Difference in functional diversity was only influenced by forest age. Mid-stage secondary forests showed lower functional diversity than early-stage forests. Our results indicated the importance of canopy traits on the natural regeneration of secondary subtropical forests. If functional similarity with reference forests is a desired objective in order to recover ecosystem functions through natural regeneration, leaf functional traits of canopy trees that establish or are planted in degraded areas must be considered in the successional processes.


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
André Frainer ◽  
Raul Primicerio ◽  
Andrey Dolgov ◽  
Maria Fossheim ◽  
Edda Johannesen ◽  
...  

As temperatures rise, motile species start to redistribute to more suitable areas, potentially affecting the persistence of several resident species and altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot for global warming, marine fish from boreal regions have been increasingly found in the more exclusive Arctic region. Here, we show that this shift in species distribution is increasing species richness and evenness, and even more so, the functional diversity of the Arctic. Higher diversity is often interpreted as being positive for ecosystem health and is a target for conservation. However, the increasing trend observed here may be transitory as the traits involved threaten Arctic species via predation and competition. If the pressure from global warming continues to rise, the ensuing loss of Arctic species will result in a reduction in functional diversity.


2020 ◽  
Author(s):  
Cayetano Gutiérrez-Cánovas ◽  
Marcos Moleón ◽  
Patricia Mateo-Tomás ◽  
Pedro P. Olea ◽  
Esther Sebastián-González ◽  
...  

AbstractVertebrate scavenger communities vary in species composition across the globe, and include a wide array of species with diverse ecological strategies and life-histories that support essential ecosystem functions, such as carrion removal. While previous studies have mostly focussed on how community aspects such as species richness and composition affect carrion consumption rates, it remains unclear whether this important function of scavengers is better explained by the dominance of key functional traits or niche complementarity as a result of a diverse functional representation.Here, we test three competitive hypotheses to assess if carrion consumption in vertebrate scavenger communities depends on: i) the presence of key dominant traits (functional identity hypothesis), ii) functional diversity that promotes niche complementarity (functional diversity hypothesis), or iii) the accumulation of individuals and species, irrespective of their trait representation (functional equivalence). To explore these hypotheses, we used five study areas in Spain and South Africa, which represent a gradient of scavenger biodiversity, i.e., ranging from communities dominated by facultative scavengers, such as generalists and meso-predators, to those including vultures and large carnivores.Within study areas, traits that characterise obligate scavengers or large carnivores (e.g. mean home range, proportion of social foragers) were positively linked to rapid carrion consumption, while the biomass of functional groups including facultative scavengers were either weakly or negatively associated with carrion consumption.When combining all study areas, higher rates of carrion consumption were related to scavenger communities dominated by species with large home ranges (e.g. Gyps vultures), which was found to be a key trait. In contrast, metrics describing functional diversity (functional dispersion) and functional equivalence (species richness and abundance) had lower predictive power in explaining carrion consumption patterns.Our data support the functional identity hypothesis as a better framework for explaining carrion consumption rates than functional diversity or equivalence. Our findings contribute to understanding the mechanisms sustaining ecosystem functioning in vertebrate communities and reinforce the role of obligate scavengers and large carnivores as keystone species in terrestrial ecosystems.


2020 ◽  
Vol 6 (16) ◽  
pp. eaay7650 ◽  
Author(s):  
C. Pimiento ◽  
F. Leprieur ◽  
D. Silvestro ◽  
J. S. Lefcheck ◽  
C. Albouy ◽  
...  

Marine megafauna, the largest animals in the oceans, serve key roles in ecosystem functioning. Yet, one-third of these animals are at risk of extinction. To better understand the potential consequences of megafaunal loss, here we quantify their current functional diversity, predict future changes under different extinction scenarios, and introduce a new metric [functionally unique, specialized and endangered (FUSE)] that identifies threatened species of particular importance for functional diversity. Simulated extinction scenarios forecast marked declines in functional richness if current trajectories are maintained during the next century (11% globally; up to 24% regionally), with more marked reductions (48% globally; up to 70% at the poles) beyond random expectations if all threatened species eventually go extinct. Among the megafaunal groups, sharks will incur a disproportionate loss of functional richness. We identify top FUSE species and suggest a renewed focus on these species to preserve the ecosystem functions provided by marine megafauna.


2020 ◽  
Vol 26 (4) ◽  
pp. 460-478
Author(s):  
Francisco Javier Murillo ◽  
Benjamin Weigel ◽  
Marieve Bouchard Marmen ◽  
Ellen Kenchington

2021 ◽  
Vol 13 (5) ◽  
pp. 2858
Author(s):  
Zhufeng Hou ◽  
Guanghui Lv ◽  
Lamei Jiang

Studying the impact of biodiversity on ecosystem multifunctionality is helpful for clarifying the ecological mechanisms (such as niche complementary effects and selection) of ecosystems providing multiple services. Biodiversity has a significant impact on ecosystem versatility, but the relative importance of functional diversity and dominant species to ecosystem functions needs further evaluation. We studied the desert plant community in Ebinur Lake Basin. Based on field survey data and experimental analysis, the relationship between the richness and functional diversity of dominant species and the single function of ecosystem was analyzed. The relative importance of niche complementary effect and selective effect in explaining the function of plant diversity in arid areas is discussed. There was no significant correlation between desert ecosystem functions (soil available phosphorus, organic matter, nitrate nitrogen, and ammonium nitrogen) and the richness of the dominant species Nitraria tangutorum (p < 0.05). Soil organic matter and available phosphorus had significant effects on specific leaf area and plant height (p < 0.05). Functional dispersion (FDis) had a significant effect on soil available phosphorus, while dominant species dominant species richness (SR) had no obvious effect on single ecosystem function. A structural equation model showed that dominant species had no direct effect on plant functional diversity and ecosystem function, but functional diversity had a strong direct effect on ecosystem function, and its direct coefficients of action were 0.226 and 0.422. The results can help to explain the response mechanism of multifunctionality to biodiversity in arid areas, which may provide referential significance for vegetation protection and restoration for other similar areas.


2020 ◽  
Author(s):  
Peter S. Stewart ◽  
Alke Voskamp ◽  
Matthias F. Biber ◽  
Christian Hof ◽  
Stephen G. Willis ◽  
...  

AbstractClimate change is predicted to drive geographical range shifts in many taxa, leading to the formation of novel species assemblages and fluctuations in species richness worldwide. However, the effect of these changes on functional diversity is not yet fully understood, in part because comprehensive species-level trait data are generally lacking at global scales. Here we use morphometric and ecological trait data for 8269 terrestrial bird species to compare functional diversity (FD) of current and future bird assemblages under a medium emissions scenario. We show that future assemblages are likely to undergo substantial shifts in trait structure, with the direction and magnitude of these shifts varying with geographical location and trophic guild. Specifically, invertivore FD is projected to increase at higher latitudes with concurrent losses at mid-latitudes, reflecting poleward shifts in range, whereas frugivore FD is projected to fluctuate in many tropical regions with major declines in much of South America and New Guinea. We show that these projected changes in FD are generally greater than expected from changing species richness alone, indicating that projected FD changes are primarily driven by the loss or gain of functionally distinct species. Our findings suggest that climate change will drive continental-scale shifts in avian functional diversity, with potentially far-reaching implications for ecosystem functions and resilience.


Author(s):  
Jonathan S Lefcheck ◽  
J. Emmett Duffy

The use of functional traits to explain biodiversity effects on ecosystem functioning has attracted intense recent interest, yet very few a priori manipulations of functional diversity have been attempted to date, especially from a food web perspective. Here, we simultaneously manipulated multiple functional traits of estuarine grazers and predators within multiple levels of species richness to test whether species richness or functional diversity is a better predictor of ecosystem functioning in multitrophic estuarine food webs. Community functional diversity better predicted the majority of ecosystem responses based on results from generalized linear mixed effects models. Structural equation modeling revealed that this outcome was independently attributable to functional diversity of both trophic levels, with stronger effects observed for predators. Functional complementarity was also important, as species with different combinations of traits influenced different ecosystem functions. Our study is the first to extend experimental investigations of functional diversity to a multilevel food web, and demonstrates that functional diversity is more effective than species richness in predicting ecosystem functioning in a food web context.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1650
Author(s):  
Herman A. Verhoef

Whether decomposition can be affected by the biodiversity of soil organisms is an important question. Biodiversity is commonly expressed through indices that are based on species richness and abundances. Soil processes tend to saturate at low levels of species richness. A component of biodiversity is functional diversity, and we have shown that the absence of the influence of species richness on decomposition switched into a positive relationship between fauna diversity and decomposition when we expressed biodiversity in terms of interspecific functional dissimilarity. Communities with functionally dissimilar species are characterized by complementary resource use and facilitative interactions among species. It is suggested that the effects of environmental changes on ecosystem functions such as decomposition can be better understood if we have more knowledge about the selective effect of these changes on specific facets of soil biodiversity, such as functional diversity.


2021 ◽  
Author(s):  
Facundo Xavier Palacio ◽  
Corey Thomas Callaghan ◽  
Pedro Cardoso ◽  
Emma Judith Hudgins ◽  
Marta A. Jarzyna ◽  
...  

The widespread use of species traits to infer community assembly mechanisms or to link species to ecosystem functions has led to an exponential increase in functionaldiversity analyses, with &gt;10,000 papers published in 2010–2019, and &gt;1,500 papers only in 2020. This interest is reflected in the development of a multitude of theoretical and methodological frameworks for calculating functional diversity, making it challenging to navigate the myriads of options and to report details to reproduce a trait-based analysis. Therefore, the study of functional diversity would benefit from the existence of a general guideline for standard reporting and good practices in this discipline. We do so by streamlining available terminology, concepts, and methods, with the overarching goal of increasing reproducibility, transparency and comparability across studies. The protocol is based on the following key elements: identification of a research question, a sampling scheme and a study design, assemblage of community and trait data matrices, data exploration and preprocessing, functional diversity computation, model fitting, evaluation and interpretation, and data, metadata and code provision. Throughout the protocol, we provide information on how to best select research questions and study designs, and discuss ways to ensure reproducibility in reporting results. To facilitate the implementation of this protocol, we further developed an interactive web-based application (stepFD) in the form of a checklist workflow, detailing all the steps of the protocol and providing tabular and graphical outputs that can be merged to produce a final report. The protocol streamlined here is expected to promote the description of functional diversity analyses in sufficient detail to ensure full transparency and reproducibility. A thorough reporting of functional diversity analyses ensures that ecologists can incorporate others’ findings into meta-analyses, the shared data can be integrated into larger databases for consensus analyses, and available code can be reused by other researchers. All these elements are key to push forward this vibrant and fast-growing field of research.


Sign in / Sign up

Export Citation Format

Share Document