Modelling Mineral Snowflakes in the Atmospheres of Gas-Giant Exoplanets

Author(s):  
Dominic Samra ◽  
Christiane Helling ◽  
Michiel Min ◽  
Til Birnstiel

<p>Exoplanets provide excellent laboratories to explore novel atmospheric regimes; using observations coupled with microphysical models we can probe our understanding of the formation and evolution of planets beyond those in the Solar System. However, clouds remain a key challenge in observation of exoplanet atmospheres, both altering the local atmospheric composition and obscuring deeper atmospheric layers. Currently, most observed exoplanet atmospheres are tidally locked gas-giants in close orbit around their host star. These hot and ultra-hot Jupiters have day-side temperatures in excess of 2500 K, and still above 400 K on the night-side, thus they form solid clouds made of minerals, metal oxides and metals. These clouds may form snowflake like structures, either through condensation or by constructive collisions (coagulation).</p><p>We explore the effects of non-compact, non-spherical cloud particles in gas-giant exoplanet atmospheres by expanding our kinetic non-equilibrium cloud formation model, to include parameterised porous cloud particles as well as cloud particle growth and fragmentation through collisions. We apply this model to prescribed 1D temperature - pressure Drift-Phoenix atmospheric profiles, using Mie theory and effective medium theory to study cloud optical depths, representing the effects of the non-spherical cloud particles through a statistical distribution of hollow spheres.</p><p>Finally, we apply our cloud formation model to a sample of gas-giants as well as ultra-hot Jupiters, using 1D profiles extracted from the 3D SPARC/MITgcm general circulation model. In particular, we take the example cases of gas-giant WASP-43b and the ultra-hot Jupiter HAT-P-7b, where we find dramatic differences in the day-/night-side distribution of clouds between these types of exoplanets due to the intensity of stellar irradiation for HAT-P-7b. Further an asymmetry in cloud coverage at the terminators of ultra-hot Jupiters is observable in the optical depth of the clouds, which affects the observable atmospheric column and thus has implication for detection of key gas phase species. Clouds also enhance the gas phase C/O which is often used as an indicator of formation history. With next-generation instruments such as the James Webb Space Telescope (JWST) such details will begin to be examined, but we find that a detailed understanding of cloud formation processes will be required to interpret observations.</p>

2020 ◽  
Vol 635 ◽  
pp. A31 ◽  
Author(s):  
K. Molaverdikhani ◽  
Ch. Helling ◽  
B. W. P. Lew ◽  
R. J. MacDonald ◽  
D. Samra ◽  
...  

Aims. The atmospheres of ultra-hot Jupiters (UHJs) are commonly considered to be at thermochemical equilibrium. We aim to provide disequilibrium chemistry maps for a global understanding of the chemistry in the atmosphere of HAT-P-7b and assess the importance of disequilibrium chemistry on UHJs. Methods. We applied a hierarchical modeling approach using 97 1D atmospheric profiles from a 3D general circulation model of HAT-P-7b. For each atmospheric 1D profile, we evaluated our kinetic cloud formation model consistently with the local gas-phase composition in chemical equilibrium. This served as input to study the quenching of dominating CHNO-binding molecules. We evaluated quenching results from a zeroth-order approximation in comparison to a kinetic gas-phase approach. Results. We find that the zeroth-order approach of estimating quenching points agrees well with the full gas-kinetic modeling results. However, it underestimates the quenching levels by about one order of magnitude at high temperatures. Chemical disequilibrium has the greatest effect on the nightside and morning abundance of species such as H, H2O, CH4, CO2, HCN, and all CnHm molecules; heavier CnHm molecules are more affected by disequilibrium processes. The CO abundance, however, is affected only marginally. While dayside abundances also notably change, those around the evening terminator of HAT-P-7b are the least affected by disequilibrium processes. The latter finding may partially explain the consistency of observed transmission spectra of UHJs with atmospheres in thermochemical equilibrium. Photochemistry only negligibly affects molecular abundances and quenching levels. Conclusions. In general, the quenching points of the atmosphere of HAT-P-7b are at much lower pressures than in the cooler hot-jupiters. We propose several avenues to determining the effect of disequilibrium processes on UHJs that are in general based on abundance and opacity measurements at different local times. It remains a challenge to completely disentangle this from the chemical effects of clouds and that of a primordial nonsolar abundance.


2009 ◽  
Vol 9 (23) ◽  
pp. 9281-9297 ◽  
Author(s):  
S. M. Burrows ◽  
T. Butler ◽  
P. Jöckel ◽  
H. Tost ◽  
A. Kerkweg ◽  
...  

Abstract. Bacteria are constantly being transported through the atmosphere, which may have implications for human health, agriculture, cloud formation, and the dispersal of bacterial species. We simulate the global transport of bacteria, represented as 1 μm and 3 μm diameter spherical solid particle tracers in a general circulation model. We investigate factors influencing residence time and distribution of the particles, including emission region, cloud condensation nucleus activity and removal by ice-phase precipitation. The global distribution depends strongly on the assumptions made about uptake into cloud droplets and ice. The transport is also affected, to a lesser extent, by the emission region, particulate diameter, and season. We find that the seasonal variation in atmospheric residence time is insufficient to explain by itself the observed seasonal variation in concentrations of particulate airborne culturable bacteria, indicating that this variability is mainly driven by seasonal variations in culturability and/or emission strength. We examine the potential for exchange of bacteria between ecosystems and obtain rough estimates of the flux from each ecosystem by using a maximum likelihood estimation technique, together with a new compilation of available observations described in a companion paper. Globally, we estimate the total emissions of bacteria-containing particles to the atmosphere to be 7.6×1023–3.5×1024 a−1, originating mainly from grasslands, shrubs and crops. We estimate the mass of emitted bacteria- to be 40–1800 Gg a−1, depending on the mass fraction of bacterial cells in the particles. In order to improve understanding of this topic, more measurements of the bacterial content of the air and of the rate of surface-atmosphere exchange of bacteria will be necessary. Future observations in wetlands, hot deserts, tundra, remote glacial and coastal regions and over oceans will be of particular interest.


2009 ◽  
Vol 699 (1) ◽  
pp. 564-584 ◽  
Author(s):  
Adam P. Showman ◽  
Jonathan J. Fortney ◽  
Yuan Lian ◽  
Mark S. Marley ◽  
Richard S. Freedman ◽  
...  

2019 ◽  
Vol 632 ◽  
pp. A114 ◽  
Author(s):  
F. Sainsbury-Martinez ◽  
P. Wang ◽  
S. Fromang ◽  
P. Tremblin ◽  
T. Dubos ◽  
...  

Context. The anomalously large radii of hot Jupiters has long been a mystery. However, by combining both theoretical arguments and 2D models, a recent study has suggested that the vertical advection of potential temperature leads to a hotter adiabatic temperature profile in the deep atmosphere than the profile obtained with standard 1D models. Aims. In order to confirm the viability of that scenario, we extend this investigation to 3D, time-dependent models. Methods. We use a 3D general circulation model DYNAMICO to perform a series of calculations designed to explore the formation and structure of the driving atmospheric circulations, and detail how it responds to changes in both the upper and deep atmospheric forcing. Results. In agreement with the previous, 2D study, we find that a hot adiabat is the natural outcome of the long-term evolution of the deep atmosphere. Integration times of the order of 1500 yr are needed for that adiabat to emerge from an isothermal atmosphere, explaining why it has not been found in previous hot Jupiter studies. Models initialised from a hotter deep atmosphere tend to evolve faster toward the same final state. We also find that the deep adiabat is stable against low-levels of deep heating and cooling, as long as the Newtonian cooling timescale is longer than ~3000 yr at 200 bar. Conclusions. We conclude that steady-state vertical advection of potential temperature by deep atmospheric circulations constitutes a robust mechanism to explain the inflated radii of hot Jupiters. We suggest that future models of hot Jupiters be evolved for a longer time than currently done, and when possible that models initialised with a hot deep adiabat be included. We stress that this mechanism stems from the advection of entropy by irradiation-induced mass flows and does not require a (finely tuned) dissipative process, in contrast with most previously suggested scenarios.


2019 ◽  
Vol 626 ◽  
pp. A133 ◽  
Author(s):  
Ch. Helling ◽  
P. Gourbin ◽  
P. Woitke ◽  
V. Parmentier

Context. WASP-18b is an ultra-hot Jupiter with a temperature difference of up to 2500 K between day and night. Such giant planets begin to emerge as a planetary laboratory for understanding cloud formation and gas chemistry in well-tested parameter regimes in order to better understand planetary mass loss and for linking observed element ratios to planet formation and evolution. Aims. We aim to understand where clouds form, their interaction with the gas-phase chemistry through depletion and enrichment, the ionisation of the atmospheric gas, and the possible emergence of an ionosphere on ultra-hot Jupiters. Methods. We used 1D profiles from a 3D atmosphere simulation for WASP-18b as input for kinetic cloud formation and gas-phase chemical equilibrium calculations. We solved our kinetic cloud formation model for these 1D profiles, which sample the atmosphere of WASP-18b at 16 different locations along the equator and in the mid-latitudes. We derived the gas-phase composition consistently. Results. The dayside of WASP-18b emerges as completely cloud-free as a result of the very high atmospheric temperatures. In contrast, the nightside is covered in geometrically extended and chemically heterogeneous clouds with dispersed particle size distributions. The atmospheric C/O ratio increases to >0.7 and the enrichment of the atmospheric gas with cloud particles is ρd/ρgas > 10−3. The clouds that form at the limbs appear located farther inside the atmosphere, and they are the least extended. Not all day- to nightside terminator regions form clouds. The gas phase is dominated by H2, CO, SiO, H2O, H2S, CH4, and SiS. In addition, the dayside has a substantial degree of ionisation that is due to ions such as Na+, K+, Ca+, and Fe+. Al+ and Ti+ are the most abundant of their element classes. We find that WASP-18b, as one example for ultra-hot Jupiters, develops an ionosphere on the dayside.


2004 ◽  
Vol 202 ◽  
pp. 261-268 ◽  
Author(s):  
Tristan Guillot

About 40% of the extrasolar giant planets discovered so far have orbital distances smaller than 0.2 AU. These “hot Jupiters” are expected to be in synchronous rotation with their star. The ability to measure their radii prompts a careful reexamination of their structure. I show that their atmospheric structure is complex and that thermal balance cannot be achieved through radiation only but must involve heat advection by large-scale circulation. A circulation model inspired from Venus is proposed, involving a relatively strong zonal wind (with a period that can be as short as 1 day). It is shown that even this strong wind is incapable of efficiently redistributing heat from the day side to the night side. Temperature variations of 200 K or more are to be expected, even at pressures as large as 10 bar. As a consequence, clouds should be absent on the day side, allowing more efficient absorption of the stellar light. The global chemical composition of the atmosphere should also be greatly affected by the presence of large temperature variations. Finally, stellar tides may also be important in their ability to deposit heat at levels untouched by stellar radiation, thereby slowing further the cooling of the planets.


2018 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have wide reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ~10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.


2020 ◽  
Author(s):  
Rolf Sander ◽  
David Cabrera-Perez ◽  
Sara Bacer ◽  
Sergey Gromov ◽  
Jos Lelieveld ◽  
...  

<p>Aromatic compounds in the troposphere are reactive towards ozone<br>(O<sub>3</sub>), hydroxyl (OH) and other radicals. Here we present an<br>assessment of their impacts on the gas-phase chemistry, using the<br>general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). The<br>monocyclic aromatics considered in this study comprise benzene, toluene,<br>xylenes, phenol, styrene, ethylbenzene, trimethylbenzenes, benzaldehyde<br>and lumped higher aromatics bearing more than 9 C atoms. On a global<br>scale, the estimated net changes are minor when aromatic compounds are<br>included in the chemical mechanism of our model. For instance, the<br>tropospheric burden of CO increases by about 6 %, and those of OH,<br>O<sub>3</sub>, and NO<sub>x</sub> (NO + NO<sub>2</sub>) decrease between<br>2 % and 14 %. The global mean changes are small partially because of<br>compensating effects between high- and low-NO<sub>x</sub> regions. The<br>largest change is predicted for glyoxal, which increases globally by 36<br>%. Significant regional changes are identified for several species. For<br>instance, glyoxal increases by 130 % in Europe and 260 % in East Asia,<br>respectively. Large increases in HCHO are also predicted in these<br>regions. In general, the influence of aromatics is particularly evident<br>in areas with high concentrations of NO<sub>x</sub>, with increases up<br>to 12 % in O<sub>3</sub> and 17 % in OH. Although the global impact of<br>aromatics is limited, our results indicate that aromatics can strongly<br>influence tropospheric chemistry on a regional scale, most significantly<br>in East Asia.</p>


2020 ◽  
Vol 634 ◽  
pp. A23 ◽  
Author(s):  
Peter Woitke ◽  
Christiane Helling ◽  
Ophelia Gunn

The precipitation of cloud particles in brown dwarf and exoplanet atmospheres establishes an ongoing downward flux of condensable elements. To understand the efficiency of cloud formation, it is therefore crucial to identify and quantify the replenishment mechanism that is able to compensate for these local losses of condensable elements in the upper atmosphere, and to keep the extrasolar weather cycle running. In this paper, we introduce a new cloud formation model by combining the cloud particle moment method we described previously with a diffusive mixing approach, taking into account turbulent mixing and gas-kinetic diffusion for both gas and cloud particles. The equations are of diffusion-reaction type and are solved time-dependently for a prescribed 1D atmospheric structure, until the model has relaxed toward a time-independent solution. In comparison to our previous models, the new hot-Jupiter model results (Teff ≈ 2000 K, log g = 3) show fewer but larger cloud particles that are more concentrated towards the cloud base. The abundances of condensable elements in the gas phase are featured by a steep decline above the cloud base, followed by a shallower, monotonous decrease towards a plateau, the level of which depends on temperature. The chemical composition of the cloud particles also differs significantly from our previous models. Through the condensation of specific condensates such as Mg2SiO4[s] in deeper layers, certain elements, such as Mg, are almost entirely removed early from the gas phase. This leads to unusual (and non-solar) element ratios in higher atmospheric layers, which then favours the formation of SiO[s] and SiO2[s], for example, rather than MgSiO3[s]. These condensates are not expected in phase-equilibrium models that start from solar abundances. Above the main silicate cloud layer, which is enriched with iron and metal oxides, we find a second cloud layer made of Na2S[s] particles in cooler models (Teff ⪅ 1400 K).


2013 ◽  
Vol 26 (16) ◽  
pp. 5827-5845 ◽  
Author(s):  
James F. Booth ◽  
Catherine M. Naud ◽  
Anthony D. Del Genio

Abstract This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.


Sign in / Sign up

Export Citation Format

Share Document