Identification and characterization of an atmospheric blocking event over the South Pacific from August 31 to September 05, 2019

Author(s):  
Jamyle Magalhães ◽  
Ana Cristina Pinto de Almeida Palmeira

<p>Atmospheric circulation in mid-latitudes is characterized by a westerlies zonal flow. On blocking conditions, this flow is interrupted by a large almost-stationary anticyclone. This situation, there is a splitting of the jet stream, what modify zonal flow pattern and change the normal eastward displacement of transients. There are two blocking types frequently observed in South Hemisphere (SH): dipole type blocking – occurs when a cut-off low is located north of the anticyclone, which characterize a dipole; omega type blocking – occurs when there is an arrangement of two cut-off lows and the blocking high like Greek letter Ω (omega, inverted in SH). First, the subjective methods were created to identify these systems, later, aiming at numerical modeling, the objective methods, called zonal index, were created. Thus, the purpose of this study was to identify, through subjective and objective methods, a blocking system that occurred over South Pacific, on the west coast of South America, from August 31 to September 05, 2019. In this study, surface synoptic chart from Navy Hydrography Center (NHC) and images from Geostationary Operational Environmental Satellite (GOES-16) in channel 13 (infrared) were used. In addition, data from Era5 reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), with a horizontal resolution of 0.25°, were used to elaborate meteorological fields and zonal index calculation. The identification criteria proposed by Casarin and Kousky (1982) were used for subjective analysis, and the Lejeñas (1984) for objective one. The analyzed fields indicate that the system had persisted for six days. In this period, the flow was split, the blocking high didn’t move more 25º of longitude and the zonal index remained negative, what satisfied all criteria used. Therefore, this event was characterized as atmospheric blocking of dipole kind.</p>

2012 ◽  
Vol 27 (3) ◽  
pp. 263-271 ◽  
Author(s):  
Monica Cristina Damião Mendes ◽  
Iracema F. A. Cavalcanti ◽  
Dirceu Luis Herdies

An assessment of blocking episodes over the Southern Hemisphere, selected from the Era-40 and NCEP/NCAR reanalysis are presented in this study. Blocking can be defined by an objective index based on two 500 hPa geopotential height meridional gradients. The seasonal cycle and preferential areas of occurrence are well reproduced by the two data sets. In both reanalysis used in this study, South Pacific and Oceania were the preferred regions for blocking occurrence, followed by the Atlantic Ocean. However the results revealed differences in frequencies of occurrences, which may be related to the choice of assimilation scheme employed to produce the reanalysis data sets. It is important to note that the ERA 40 and NCEP/NCAR reanalysis were produced using consistent models and assimilation schemes throughout the whole reanalyzed period, which are different for each set.


2021 ◽  
Vol 2 ◽  
Author(s):  
Brandi Kiel Reese ◽  
Morgan S. Sobol ◽  
Marshall Wayne Bowles ◽  
Kai-Uwe Hinrichs

The characterization of metabolically active fungal isolates within the deep marine subsurface will alter current ecosystem models and living biomass estimates that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations from the transformation of non-bioavailable energy into substrates, as well as from the fungal necromass itself. These organic carbon sources are not currently being considered in subsurface energy budgets. Sediments from South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program Expedition 329. Anoxic and oxic sediment slurry enrichments using fresh sediment were used to isolate multiple fungal strains in media types that varied in organic carbon substrates and concentration. Metabolically active and dormant fungal populations were also determined from nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. For further characterization of physical growth parameters, two isolates were chosen based on their representation of the whole South Pacific Gyre fungal community. Results from this study show that fungi have adapted to be metabolically active and key community members in South Pacific Gyre sediments and potentially within global biogeochemical cycles.


2008 ◽  
Vol 77 (5) ◽  
pp. 055502 ◽  
Author(s):  
M Negrea ◽  
I Petrisor ◽  
B Weyssow
Keyword(s):  

2015 ◽  
Vol 419 ◽  
pp. 211-221 ◽  
Author(s):  
Chandranath Basak ◽  
Katharina Pahnke ◽  
Martin Frank ◽  
Frank Lamy ◽  
Rainer Gersonde

2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


2007 ◽  
Vol 20 (4) ◽  
pp. 633-649 ◽  
Author(s):  
M. Croci-Maspoli ◽  
C. Schwierz ◽  
H. C. Davies

Abstract A dynamically based climatology is derived for Northern Hemisphere atmospheric blocking events. Blocks are viewed as large amplitude, long-lasting, and negative potential vorticity (PV) anomalies located beneath the dynamical tropopause. The derived climatology [based on the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40)] provides a concise, coherent, and illuminating description of the main physical characteristics of blocks and the accompanying linear trends. The latitude–longitude distribution of blocking frequency captures the standard bimodal geographical distribution with major peaks over the North Atlantic and eastern North Pacific in all four seasons. The accompanying pattern for the age distribution, the genesis–lysis regions, and the track of blocks reveals that 1) younger blocks (1–4 days) are more prevalent at lower latitudes whereas significantly older blocks (up to 12 days) are located at higher latitudes; 2) genesis is confined predominantly to the two major ocean basins and in a zonal band between 40° and 50°N latitude, whereas lysis is more dispersed but with clear preference to higher latitudes; and 3) the general northeastward–west-northwest movement of blocks in the genesis–lysis phase also exhibits subtle seasonal and intra- and interbasin differences. Examination of the intensity and spatial-scale changes during the blocking life cycle suggests that in the mean a block’s evolution is independent of the genesis region and its eventual duration. A novel analysis of blocking trends reveals significant negative trends in winter over Greenland and in spring over the North Pacific. It is shown that the changes over Greenland are linked to the number of blocking episodes, whereas a neighboring trend signal to the south is linked to higher-frequency anticyclonic systems. Furthermore, evidence is adduced that changes in blocking frequency contribute seminally to tropopause height trends.


1985 ◽  
Vol 107 (4) ◽  
pp. 309-314 ◽  
Author(s):  
K. K. Shung

Ultrasonic imaging has become increasingly important as a diagnostic tool in medicine because it is noninvasive and it can provide valuable information otherwise unattainable. However, at present, clinical interpretation of an ultrasonic image still mostly relies on recognition of boundaries and positional relationship of anatomical structures and a subjective analysis of the distribution or texture of echo amplitudes. Other potentially useful information carried back by the echoes is completely discarded. The aim of ultrasonic tissue characterization research is to develop methods to extract additional information from the returned echoes so that tissue pathology or abnormality can be reliably identifed and severity of the pathology objectively assessed with quantiative criteria. A number of ultrasonic parameters including acoustic velocity, impedance, attentuation and scattering, have been utilized in attempting to achieve this goal. In this paper, recent progress in this research will be discussed and relevant results presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Juanjuan Ji ◽  
Yecai Guo ◽  
Lanfang Zhang ◽  
Lihua Zhang

A (2 + 1)-dimensional variable coefficient Korteweg-de Vries (3D VCKdV) equation is first derived in this paper by means of introducing 2-dimensional space and time slow-varying variables and the multiple-level approximation method from the well-known barotropic and quasi-geostrophic potential vorticity equation without dissipation. The exact analytical solution of the 3D VCKdV equation is obtained successfully by making use of CK’s direct method and the standard Zakharov–Kuznetsov equation. By some arbitrary functions and the analytical solution, a dipole blocking evolution process with twelve days’ lifetime is described, and the result illustrates that the central axis of the dipole is no longer perpendicular to the vertical direction but has a certain angle to vertical direction. The comparisons with the previous researches and Urals dipole blocking event demonstrate that 3D VCKdV equation is more suitable for describing the complex atmospheric blocking phenomenon.


Sign in / Sign up

Export Citation Format

Share Document