Geochronological evidence for repeated brittle reactivations of a pre-existing plastic shear zone: The Himdalen–Ørje deformation zone, Southern Norway

Author(s):  
Espen Torgersen ◽  
Roy Gabrielsen ◽  
Johan Petter Nystuen ◽  
Roelant van der Lelij ◽  
Morgan Ganerød ◽  
...  

<p>It is well known that faults, once formed, become permanent weaknesses in the crust, localizing subsequent brittle strain increments. The case of repeated brittle reactivations localized along pre-existing plastic shear zones is less recognized, although this situation is frequently observed in many geologically old terranes.</p><p>We have studied the prolonged deformation history of the Himdalen–Ørje Deformation Zone (HØDZ) in SE Norway by combining K–Ar and <sup>40</sup>Ar–<sup>39</sup>Ar geochronology with structural analysis. The HØDZ consists of a large variation of deformation products from mylonites and cataclasites to pseudotachylites and fault gouge. Several generations of mylonites make up the ductile part of HØDZ, called the Ørje shear zone, a km-think SW-dipping shear zone within the late Mesoproterozoic Sveconorwegian orogen. <sup>40</sup>Ar–<sup>39</sup>Ar dating of white mica from one of these mylonites give a plateau age of c. 908 Ma, interpreted to constrain the timing of late-Sveconorwegian extensionial reactivation of the Ørje shear zone.</p><p>This mylonitic fabric is extensively reworked in a brittle fashion along the SW-dipping Himdalen fault, a 10–25 m thick fault zone of cataclasite, breccia, fault gouge and, in places, abundant pseduotachylite veins. <sup>40</sup>Ar–<sup>39</sup>Ar dating of pseduotachylite material gives several small plateaus between c. 375 and 300 Ma, whereas K-feldspar clasts from the cataclasitically deformed host rock carry a Caledonian signal (plateau at c. 435 Ma). K–Ar dating of three fault gouges constrain the timing of gouge development at c. 270 and 200 Ma. Two of the fault gouges also contain protolithic K-bearing mineral phases that overlap in age with the c. 375 Ma pseudotachylite <sup>40</sup>Ar–<sup>39</sup>Ar plateau age, consistent with field observations of the former reworking the latter.</p><p>In sum, the HØDZ records multiple Paleozoic and Mesozoic brittle reactivations of the early Neoproterozoic (and older) mylonitic Ørje shear zone. Most of the brittle deformation is interpreted to have accumulated during development of the Permian Oslo rift and its subsequent latest Triassic evolution. The suggested late Devonian (c. 375 Ma) initiation of brittle deformation does not have a clear tectonic association, but we speculate that it relates to strike-slip displacements caused by the Variscan orogen, as also suggested for the sub-parallel Tornquist zone to the south.</p>

2017 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle-ductile transition and seismogenesis. In subduction environment, switching in deformation mode and mechanisms may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). On the other hand, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in the localization of deformation and shear zone development, thus representing a case in which switching deformation mode and mechanisms interact and relate to each other. This contribution analyzes an example of a crystal plastic shear zone localized by brittle precursor formed within a host granitic-protomylonite during deformation in subduction-related environment. The studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations may be considered as a small scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow slip structures. Our case-study represents, therefore, a fossil example of association of fault structures related with stick-slip strain accomodation during subduction of continental crust.


2021 ◽  
Author(s):  
Timothy Armitage ◽  
Robert Holdsworth ◽  
Robin Strachan ◽  
Thomas Zach ◽  
Diana Alvarez-Ruiz ◽  
...  

<p>Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0cf6ef44e5ff57820599061/sdaolpUECMynit/12UGE&app=m&a=0&c=d96bb6db75eed0739f2a6ee90c9ad8fd&ct=x&pn=gepj.elif&d=1" alt=""></p>


2020 ◽  
Author(s):  
Claudio Rosenberg ◽  
Loïc Labrousse ◽  
Nicolas Landry ◽  
Elena Druguet ◽  
Jordi Carreras

<p>The area of Cap de Creus, at the eastern termination of the Axial Zone of the Pyrenean Belt, exposes some of the most famous outcrops of ductile shear zones and shear zone networks (Carreras, 2001). Recent studies proposed that the nucleation and growth of such shear zones may have taken place by brittle processes (Fusseis et al., 2006; Fusseis and Handy, 2008).</p><p>The present study investigates the geometrical relationships between fracture systems and some shear zones, the deformation temperature of these shear zones, and the processes leading to the nucleation and growth of shear zones along fracture planes. We selected two areas of the Cap de Creus, the Cala d’Agulles, and the Punta de Cap de Creus, because they are most intensely dissected by subparallel sets of shear zones and fractures. The orientation of the average shear zone planes is sub-parallel to the orientation of the major set of fractures, and the great extent and close spacing of some shear zones that we characterized by aerial photos from a drone, is similar to the distribution and extent of the fracture planes. These observations, in addition to those of Fusseis et al. (2006) suggest that the shear zones nucleated on previous fracture planes. </p><p>These fractures are surrounded by haloes of nearly 1 cm thickness affecting the fabric of the country rock, an amphibolite-facies, biotite-andalusite bearing schist. Microscopic observations show that the haloes correspond to the wide-spread presence of thin (less than 2µm thickness) phosphate seams coating the grain boundaries, preferentially those oriented at low angle to the fracture plane, and to the alteration of plagioclase to white mica and sericite, and to the growth of tourmaline, also related to grain boundaries and micro-fractures.</p><p>Deformation temperature in the shear zones is assessed by white mica thermometry and pseudosections. The calculated T of at least 350-400° C is consistent with qualitative observations showing the presence of stable biotite within very fine-grained (<< 10 µm) shear bands and the recrystallization of quartz by rotation of sub-grain boundaries.</p><p>In summary, fractures formed at high temperature, possibly associated with the intrusion of tourmaline-bearing pegmatites and fluids, which predate the ductile mylonitic event (Druguet, 2001; Van Lichtervelde et al., 2017). Fluids altered and weakened a volume of approximately 2 cm thickness all along the fracture planes, whose extent may reach > 100 m. The inferred, relatively high T of ca.  400° C indicates that fracturing is not due to the proximity of the brittle-ductile transition. In addition, no significant micro-fracturing of the mylonites is observed in thin sections. Therefore, fracturing precedes the ductile shear zones, which nucleate on some of the “inherited” sets of thin, planar, weakened structures, the large majority of which remains undeformed. These observations raise the question on whether nucleation and propagation of ductile shear zones is mechanically unrelated to brittle fracturing. Their weakening of planar structures would originate from fluid migration along fracture planes, but fracturing would no longer be active during ductile deformation.</p>


2021 ◽  
Author(s):  
Georg Löwe ◽  
Susanne Schneider ◽  
Blanka Sperner ◽  
Philipp Balling ◽  
Jörg Pfänder ◽  
...  

<p>Extension across the southern Pannonian Basin and the internal Dinarides is characterized by the occurrence of a chain of Oligo-Miocene metamorphic core complexes (MCCs) exhumed along mylonitic low-angle extensional shear zones which in part represent former suturing thrusts. Cer MCC at the transition between the internal Dinarides and the Pannonian Basin occupies a structural position within the distal-most Adriatic thrust sheet and originates from two different tectonic processes: Late Cretaceous-Paleogene nappe-stacking during continent-continent collision between Adria and fragments of European lithosphere with Adria residing in a lower plate position, followed by Miocene exhumation. Structural data and a balanced cross section through the Cer massif show that the exhuming shear zone links to a breakaway fault, which reactivated the early Late Cretaceous most internal nappe contact between the two distal-most Adriatic thrust sheets. At Cer MCC, Paleozoic greenschist- to amphibolite-grade lithologies surround a polyphase intrusion composed of I- and S-type granites. These lithologies were exhumed along the shear zone by top-N transport. Thermobarometric analyses indicate an intrusion depth of 7-8 km of the Oligocene I-type granite; cooling below ~500°C occurred at 25.4±0.6 Ma (1σ) yielded by <sup>40</sup>Ar/<sup>39</sup>Ar dating of hornblende. Biotite and white mica from this intrusion as well as from the mylonitic shear zone yield <sup>40</sup>Ar/<sup>39</sup>Ar ages of 17-18 Ma independent of the used techniques (in-situ laser ablation, single-grain total fusion, single-grain step heating, and multi-grain step heating). White mica from the S-type granite yield an <sup>40</sup>Ar/<sup>39</sup>Ar age of 16.7±0.1 Ma (1σ). Associated dikes intruding the shear zone were also affected by N-S extension, indicating that deformation was still ongoing at that time. Our data suggests that exhumation of the MCC was related to the opening of the Pannonian back-arc basin in response to the Carpathian slab-rollback and triggered extensional reactivation of thrusts in the internal Dinarides.</p>


2020 ◽  
Author(s):  
Adrian E. Castro ◽  
◽  
Chloe Bonamici ◽  
Christopher G. Daniel ◽  
Danielle Shannon Sulthaus

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


2018 ◽  
Vol 722 ◽  
pp. 595-600 ◽  
Author(s):  
M. Cihat Alçiçek ◽  
Lars W. van den Hoek Ostende ◽  
Gerçek Saraç ◽  
Alexey S. Tesakov ◽  
Alison M. Murray ◽  
...  

2021 ◽  
Author(s):  
Carolyn Boulton ◽  
D Moore ◽  
D Lockner ◽  
V Toy ◽  
John Townend ◽  
...  

Principal slip zone gouges recovered during the Deep Fault Drilling Project (DFDP-1), Alpine Fault, New Zealand, were deformed in triaxial friction experiments at temperatures, T, of up to 350°C, effective normal stresses, σn′, of up to 156 MPa, and velocities between 0.01 and 3 μm/s. Chlorite/white mica-bearing DFDP-1A blue gouge, 90.62 m sample depth, is frictionally strong (friction coefficient, μ, 0.61-0.76) across all experimental conditions tested (T = 70-350°C, σn′ = 31.2-156 MPa); it undergoes a transition from positive to negative rate dependence as T increases past 210°C. The friction coefficient of smectite-bearing DFDP-1B brown gouge, 128.42 m sample depth, increases from 0.49 to 0.74 with increasing temperature and pressure (T = 70-210°C, σn′ = 31.2-93.6 MPa); the positive to negative rate dependence transition occurs as T increases past 140°C. These measurements indicate that, in the absence of elevated pore fluid pressures, DFDP-1 gouges are frictionally strong under conditions representative of the seismogenic crust.


Sign in / Sign up

Export Citation Format

Share Document