Complex kinematics in a major ductile shear zone, NW Shetland: Evidence of ductile extrusion during Caledonian transpression

Author(s):  
Timothy Armitage ◽  
Robert Holdsworth ◽  
Robin Strachan ◽  
Thomas Zach ◽  
Diana Alvarez-Ruiz ◽  
...  

<p>Ductile shear zones are heterogeneous areas of strain localisation which often display variation in strain geometry and combinations of coaxial and non-coaxial deformation. One such heterogeneous shear zone is the c. 2 km thick Uyea Shear Zone (USZ) in northwest Mainland Shetland (UK), which separates variably deformed Neoarchaean orthogneisses in its footwall from Neoproterozoic metasediments in its hanging wall (Fig. a). The USZ is characterised by decimetre-scale layers of dip-slip thrusting and extension, strike-slip sinistral and dextral shear senses and interleaved ultramylonitic coaxially deformed horizons. Within the zones of transition between shear sense layers, mineral lineations swing from foliation down-dip to foliation-parallel in kinematically compatible, anticlockwise/clockwise-rotations on a local and regional scale (Fig. b). Rb-Sr dating of white mica grains via laser ablation indicates a c. 440-425 Ma Caledonian age for dip-slip and strike-slip layers and an 800 Ma Neoproterozoic age for coaxial layers. Quartz opening angles and microstructures suggest an upper-greenschist to lower-amphibolite facies temperature for deformation. We propose that a Neoproterozoic, coaxial event is overprinted by Caledonian sinistral transpression under upper greenschist/lower amphibolite facies conditions. Interleaved kinematics and mineral lineation swings are attributed to result from differential flow rates resulting in vertical and lateral extrusion and indicate regional-scale sinistral transpression during the Caledonian orogeny in NW Shetland. This study highlights the importance of linking geochronology to microstructures in a poly-deformed terrane and is a rare example of a highly heterogeneous shear zone in which both vertical and lateral extrusion occurred during transpression.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gepj.0cf6ef44e5ff57820599061/sdaolpUECMynit/12UGE&app=m&a=0&c=d96bb6db75eed0739f2a6ee90c9ad8fd&ct=x&pn=gepj.elif&d=1" alt=""></p>

1993 ◽  
Vol 30 (7) ◽  
pp. 1338-1354 ◽  
Author(s):  
Mel R. Stauffer ◽  
John F. Lewry

Needle Falls Shear Zone is the southern part of a major northeast-trending ductile shear system within the Paleoproterozoic Trans-Hudson Orogen in Saskatchewan. Throughout its exposed length of ~400 km, the shear zone separates reworked Archean continental crust and infolded Paleoproterozoic supracrustals of the Cree Lake Zone, to the northwest, from mainly juvenile Paleoproterozoic arc terrains and granitoid plutons of the Reindeer Zone, to the southeast. It also defines the northwest margin of the ca. 1855 Ma Wathaman Batholith, which forms the main protolith to shear zone mylonites. Although not precisely dated, available age constraints suggest that the shear zone formed between ca. 1855 and 1800 Ma, toward the end of peak thermotectonism in this part of the orogen.In the Needle Falls study area, shear zone mylonites exhibit varied, sequentially developed, ductile to brittle fabric features, including C–S fabrics, winged porphyroclasts (especially delta type), small-scale compressional and extensional microfaults ranging from thin ductile shear zones to late brittle faults, early isoclinal and sheath folds, later asymmetric folds related to compressional microfaults, and variably rotated and (or) folded quartz veins. All ductile shear-sense indicators suggest dextral displacement, as do most later ductile–brittle transition and brittle features. In conjunction with a gently north–northeast-plunging extension lineation, such data indicate oblique east-side-up dextral movement across the shear zone. However, preexisting structures in country rock protoliths rotate into the shear zone in a sense contrary to that predicted by ideal dextral simple shear, a feature thought to reflect significant flattening across the shear zone. Other ductile to brittle fabric elements in the mylonites are consistent with general noncoaxial strain, rather than ideal simple shear. Amount of displacement cannot be measured but indirect estimates suggest approximately 40 ± 20 km.The Needle Falls Shear Zone is too small and has developed too late in regional tectonic history to be considered a crustal suture. Rather, it is interpreted as either a late-tectonic oblique collisional structure or as the result of counterclockwise oroclinal rotation of the southern part of the orogen.


2021 ◽  
pp. jgs2021-038
Author(s):  
Yanlong Dong ◽  
Shuyun Cao ◽  
Franz Neubauer ◽  
Haobo Wang ◽  
Wenyuan Li ◽  
...  

Lateral extrusion of blocks is a well-known geological process during continent–continent collision, which always expresses by either brittle strike-slip faults or ductile shear zones. However, vertical motion along such fault systems remains poorly constrained. The Gaoligong shear zone (GLG-SZ) formed the western boundary of the Indochina block during the India–Eurasia collision, resulting in the exhumation of deep crustal rocks, including a large volume of syntectonic granites. Combined zircon U-Pb dating and 40Ar/39Ar thermochronology revealed that both the unfoliated and foliated granitic intrusions were emplaced during the Early Cretaceous (112–125 Ma), post-magmatic melting occurred from the Early Oligocene (ca. 35 Ma), and subsequent cooling during the Middle Miocene (ca. 13 Ma). The average emplacement depth of Early Cretaceous samples revealed that at least 15 km of hangingwall of the GLG-SZ must have been removed by vertical motion during shearing. Syn-shearing exhumation underlines the role of the lateral motion of the shear zone initiation by magma-assisted rheological weakening and exhumation at high ambient temperatures within the shear zone. A new model links magmatic channel flow underneath the Tibetan Plateau with magma intrusions and the high geothermal gradients along the shear belts, such as the GLG-SZ.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5598365


2020 ◽  
Vol 113 (1-2) ◽  
pp. 139-153
Author(s):  
Gerit E. U. Griesmeier ◽  
Christoph Iglseder ◽  
Ralf Schuster ◽  
Konstantin Petrakakis

AbstractThis work describes the Freyenstein Fault System, which extends over 45 km in the southeastern part of the Bohemian Massif (Lower Austria). It represents a ductile shear zone overprinted by a brittle fault located at the eastern edge of the South Bohemian Batholith towards the Moldanubian nappes. It affects Weinsberg- and a more “fine-grained” granite, interlayered aplitic granite and pegmatite dikes as well as paragneiss of the Ostrong Nappe System. The ductile shear zone is represented by approximately 500 m thick greenschist-facies mylonite dipping about 60° to the southeast. Shear-sense criteria like clast geometries, SCC`-type shear band fabrics as well as abundant microstructures show top to the south/ southsouthwest normal shearing with a dextral strike-slip component. Mineral assemblages in mylonitized granitoid consist of pre- to syntectonic muscovite- and biotite-porphyroclasts as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. Dynamic recrystallization of potassium feldspar and the stability of biotite indicate upper green-schist-facies metamorphic conditions during the early phase of deformation. Fluid infiltration at lower greenschist-facies conditions led to local sericitization of feldspar and synmylonitic chloritisation of biotite during a later stage of ductile deformation. Finally, a brittle overprint by a north-south trending, subvertical, sinistral strike-slip fault that shows a normal component is observed. Ductile normal shearing along the Freyenstein Shear Zone is interpreted to have occurred between 320 Ma and c. 300 Ma. This time interval is indicated by literature data on the emplacement of the hostrock and cooling below c. 300°C inferred from two Rb-Sr biotite ages measured on undeformed granites close to the shear zone yielding 309.6 ± 3 Ma and 290.9 ± 2.9 Ma, respectively. Brittle sinistral strike-slip faulting at less than 300°C presumably took place not earlier than 300 Ma. Early ductile shearing along the Freyenstein Fault System may be genetically, but not kinematically linked to the Strudengau Shear Zone, as both acted in an extensional regime during late Variscan orogenic collapse. A relation to other major northeast-southwest trending faults of this part of the Bohemian Massif (e.g. the Vitis-Pribyslav Fault System) is indicated for the phase of brittle sinistral movement.


Author(s):  
B. Zhang ◽  
S.Y. Chen ◽  
Y. Wang ◽  
P.W. Reiners ◽  
F.L. Cai ◽  
...  

During the collision of India and Eurasia, regional-scale strike-slip shear zones played a key role in accommodating lateral extrusion of blocks, block rotation, and vertical exhumation of metamorphic rocks as presented by deformation on the Ailao Shan-Red River shear zone (ARSZ) in the Eastern Himalayan Syntaxis region and western Yunnan, China. We report structural, mica Ar/Ar, apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data from the Diancangshan massif in the middle segment of the ARSZ. These structural data reveal that the massif forms a region-scale antiform, bordered by two branches of the ARSZ along its eastern and western margins. Structural evidence for partial melting in the horizontal mylonites in the gneiss core document that the gneiss experienced a horizontal shear deformation in the middle crust. Muscovite Ar/Ar ages of 36−29 Ma from the core represent cooling ages. Muscovite Ar/Ar ages of 25 and 17 Ma from greenschist-facies mylonites along the western and southern shear zones, respectively, are interpreted as recording deformation in the ARSZ. The AFT ages, ranging from 15 to 5 Ma, represent a quiescent gap with a slow cooling/exhumation in the massif. AHe results suggest that a rapid cooling and final exhumation episode of the massif could have started before 3.2 Ma, or likely ca. 5 Ma, and continue to the present. The high-temperature horizontal shearing layers of the core were first formed across the Indochina Block, locally antiformed along the tectonic boundaries, and then cooled through the mica Ar-Ar closure temperature during Eocene or early Oligocene, subsequently reworked and further exhumed by sinistral strike-slip movement along the ARSZ during the early Oligocene (ca. 29 Ma), lasting until ca. 17 Ma, then final exhumation of the massif occurred by dextral normal faulting on the Weixi-Qiaohou and Red River faults along the limbs of the ARSZ since ca. 5 Ma. The formation of the antiform could indicate local crustal thickening in an early transpressional setting corresponding to India-Asia convergence. Large-scale sinistral ductile shear along the ARSZ in the shallow crust accommodated lateral extrusion of the Indochina Block, and further contributed to the vertical exhumation of the metamorphic massif from the late Oligocene to the middle Miocene. Furthermore, the change of kinematic reversal and associated cooling episodes along the ARSZ since the middle Miocene or early Pliocene imply a tectonic transfer from strain localization along the major tectonic boundaries to continuous deformation corresponding to plateau growth and expansion.


2020 ◽  
Author(s):  
Claudio Rosenberg ◽  
Loïc Labrousse ◽  
Nicolas Landry ◽  
Elena Druguet ◽  
Jordi Carreras

<p>The area of Cap de Creus, at the eastern termination of the Axial Zone of the Pyrenean Belt, exposes some of the most famous outcrops of ductile shear zones and shear zone networks (Carreras, 2001). Recent studies proposed that the nucleation and growth of such shear zones may have taken place by brittle processes (Fusseis et al., 2006; Fusseis and Handy, 2008).</p><p>The present study investigates the geometrical relationships between fracture systems and some shear zones, the deformation temperature of these shear zones, and the processes leading to the nucleation and growth of shear zones along fracture planes. We selected two areas of the Cap de Creus, the Cala d’Agulles, and the Punta de Cap de Creus, because they are most intensely dissected by subparallel sets of shear zones and fractures. The orientation of the average shear zone planes is sub-parallel to the orientation of the major set of fractures, and the great extent and close spacing of some shear zones that we characterized by aerial photos from a drone, is similar to the distribution and extent of the fracture planes. These observations, in addition to those of Fusseis et al. (2006) suggest that the shear zones nucleated on previous fracture planes. </p><p>These fractures are surrounded by haloes of nearly 1 cm thickness affecting the fabric of the country rock, an amphibolite-facies, biotite-andalusite bearing schist. Microscopic observations show that the haloes correspond to the wide-spread presence of thin (less than 2µm thickness) phosphate seams coating the grain boundaries, preferentially those oriented at low angle to the fracture plane, and to the alteration of plagioclase to white mica and sericite, and to the growth of tourmaline, also related to grain boundaries and micro-fractures.</p><p>Deformation temperature in the shear zones is assessed by white mica thermometry and pseudosections. The calculated T of at least 350-400° C is consistent with qualitative observations showing the presence of stable biotite within very fine-grained (<< 10 µm) shear bands and the recrystallization of quartz by rotation of sub-grain boundaries.</p><p>In summary, fractures formed at high temperature, possibly associated with the intrusion of tourmaline-bearing pegmatites and fluids, which predate the ductile mylonitic event (Druguet, 2001; Van Lichtervelde et al., 2017). Fluids altered and weakened a volume of approximately 2 cm thickness all along the fracture planes, whose extent may reach > 100 m. The inferred, relatively high T of ca.  400° C indicates that fracturing is not due to the proximity of the brittle-ductile transition. In addition, no significant micro-fracturing of the mylonites is observed in thin sections. Therefore, fracturing precedes the ductile shear zones, which nucleate on some of the “inherited” sets of thin, planar, weakened structures, the large majority of which remains undeformed. These observations raise the question on whether nucleation and propagation of ductile shear zones is mechanically unrelated to brittle fracturing. Their weakening of planar structures would originate from fluid migration along fracture planes, but fracturing would no longer be active during ductile deformation.</p>


Lithosphere ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Beihang Zhang ◽  
Jin Zhang ◽  
Heng Zhao ◽  
Junfeng Qu ◽  
Yiping Zhang ◽  
...  

Abstract Strike-slip faults are widely developed throughout the Central Asian Orogenic Belt (CAOB), one of the largest Phanerozoic accretionary orogenic collages in the world, and may have played a key role in its evolution. Recent studies have shown that a large number of Late Paleozoic–Early Mesozoic ductile shear zones developed along the southern CAOB. This study reports the discovery of a NW–SE striking, approximately 500 km long and up to 2 km wide regional ductile shear zone in the southern Alxa Block, the Southern Alxa Ductile Shear Zone (SADSZ), which is located in the central part of the southern CAOB. The nearly vertical mylonitic foliation and subhorizontal stretching lineation indicate that the SADSZ is a ductile strike-slip shear zone, and various kinematic indicators indicate dextral shearing. The zircon U-Pb ages and the 40Ar/39Ar plateau ages of the muscovite and biotite indicate that the dextral ductile shearing was active during Middle Permian to Middle Triassic (ca. 269–240 Ma). The least horizontal displacement of the SADSZ is constrained between ca. 40 and 50 km. The aeromagnetic data shows that the SADSZ is in structural continuity with the coeval shear zones in the central and northern Alxa Block, and these connected shear zones form a ductile strike-slip duplex in the central part of the southern CAOB. The ductile strike-slip duplex in the Alxa Block, including the SADSZ, connected the dextral ductile shear zones in the western and eastern parts of the southern CAOB to form a 3000 km long E-W trending dextral shear zone, which developed along the southern CAOB during Late Paleozoic to Early Mesozoic. This large-scale dextral shear zone was caused by the eastward migration of the orogenic collages and blocks of the CAOB and indicates a transition from convergence to transcurrent setting of the southern CAOB during Late Paleozoic to Early Mesozoic.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2021 ◽  
Author(s):  
Claudio Robustelli Test ◽  
Elena Zanella ◽  
Andrea Festa ◽  
Francesca Remitti

<p>Deciphering the stress and strain distribution across plate boundary shear zones is critical to understanding the physical processes involved in the nucleation of megathrust faults and its behaviour. Plate boundaries at shallow depth represent complex and highly deformed zones showing structures from both distributed and localized deformation.</p><p>As magnetic minerals are sensitive to stress regime, the investigation of the magnetic fabric has proven to be an effective tool in studying faulting processes at intraplate shear zones.</p><p>Anisotropy of magnetic susceptibility (AMS) provides insights into the preferred orientation of mineral grains and the qualitative relationships between petrofabrics and deformation intensity.</p><p>We present an approach of combined Contoured Diagram and Cluster Analysis to isolate the contribution of coexisting petrofabrics to the total AMS and evaluating the significance of magnetic fabric clusters.</p><p>Our results reveal distinct subfabrics with reasonably straightforward correlations with structural data. Specific AMS pattern may be associated to the intensity of the reworking related to tectonic shearing and the structural position within the shear zone (i.e., the proximity to the main thrust faults).</p><p>Close to the main thrust the magnetic fabric is dominantly oblate with magnetic foliation consistent to the S-C fabric and/or mélange foliation and the magnetic lineation parallel to the shear sense.</p><p>Away from the thrust faults the degree of anisotropy as well as the ellipsoids oblateness gradually diminishes. Thus, the presence of subfabrics related to previous tectonic events or less intense deformation (i.e. intersection lineation fabric) became dominant. The discrimination of subfabrics also allowed to unravel the presence of minor thrust plane and qualitatively evaluate the heterogeneous registration of strain (i.e. distributed versus localized deformation).</p><p>An abrupt change in magnetic ellipsoid shape and parameters is also observed below the basal décollements showing purely sedimentary magnetic fabric or previous deformation history with minor to absent evidences of shearing in the hanging wall.</p><p>Then, the integration with anisotropy of magnetic remanence experiments in different coercivity windows (ApARM) allow to separate the contribution of different ferromagnetic subpopulation of grains, constraining the significance of the different magnetic pattern/clusters detected through the AMS analysis.</p><p>In conclusion, our results show the potential of a combination of density diagrams and cluster analysis validated by ApARM experiments in distinguishing the superposition of deformation events, unravelling strain partitioning/concentration and thus to better understand the geodynamic evolution of subduction-accretion complexes.</p>


2019 ◽  
Author(s):  
Matthew S. Tarling ◽  
Steven A. F. Smith ◽  
James M. Scott ◽  
Jeremy S. Rooney ◽  
Cecilia Viti ◽  
...  

Abstract. Deciphering the internal structural and composition of large serpentinite-dominated shear zones will lead to an improved understanding of the rheology of the lithosphere in a range of tectonic settings. The Livingstone Fault in New Zealand is a > 1000 km long terrane-bounding structure that separates the basal portions (peridotite; serpentinised peridotite; metagabbros) of the Dun Mountain Ophiolite Belt from quartzofeldspathic schists of the Caples or Aspiring Terranes. Field and microstructural observations from eleven localities along a strike length of c. 140 km show that the Livingstone Fault is a steeply-dipping, serpentinite-dominated shear zone tens to several hundreds of metres wide. The bulk shear zone has a pervasive scaly fabric that wraps around fractured and faulted pods of massive serpentinite, rodingite and partially metasomatised quartzofeldspathic schist up to a few tens of metres long. S-C fabrics and lineations in the shear zone consistently indicate a steep Caples-side-up (i.e. east-side-up) shear sense, with significant local dispersion in kinematics where the shear zone fabrics wrap around pods. The scaly fabric is dominated (> 98 vol %) by fine-grained (≪ 10 μm) fibrous chrysotile and lizardite/polygonal serpentine, but infrequent (


2020 ◽  
Vol 50 (1) ◽  
pp. 237-250 ◽  
Author(s):  
Michael B. Stephens

AbstractAn intimate lithostratigraphic and lithodemic connection between syn-orogenic rock masses inside the different lithotectonic units of the 2.0–1.8 Ga (Svecokarelian) orogen, Sweden, is proposed. A repetitive cyclic tectonic evolution occurred during the time period c. 1.91–1.75 Ga, each cycle lasting about 50–55 million years. Volcanic rocks (c. 1.91–1.88 Ga) belonging to the earliest cycle are host to most of the base metal sulphide and Fe oxide deposits inside the orogen. Preservation of relict trails of continental magmatic arcs and intra-arc basins is inferred, with differences in the depth of basin deposition controlling, for example, contrasting types of base metal sulphide deposits along different trails. The segmented geometry of these continental magmatic arcs and intra-arc basins is related to strike-slip movement along ductile shear zones during transpressive events around and after 1.88 Ga; late orogenic folding also disturbed their orientation on a regional scale. A linear northwesterly orogenic trend is suggested prior to this structural overprint, the strike-slip movement being mainly parallel to the orogen. A solely accretionary orogenic model along an active margin to the continent Fennoscandia, without any trace of a terminal continent–continent collision, is preferred. Alternating retreating and advancing subduction modes that migrated progressively outboard and southwestwards in time account for the tectonic cycles.


Sign in / Sign up

Export Citation Format

Share Document