A downscaling framework for precipitation nowcasting by merging radar retrievals at different scales and resolutions

Author(s):  
Roberto Deidda ◽  
Stefano Farris ◽  
Maria Grazia Badas ◽  
Marino Marrocu ◽  
Luca Massidda ◽  
...  

<p>Convective rainfall events represent one of the most critical issues in urban areas, where numerical weather prediction models are affected by a large uncertainty related to the short temporal and spatial scales involved, thus making early warning systems ineffective. Conversely, radar-based nowcasting models may be a useful tool to guarantee short-term forecasts, through the extrapolation of most recent properties in observed precipitation fields, for lead times ranging from minutes to few hours.</p><p>In this study we develop a procedure for merging relevant information from two radar products with different resolutions and scales: (i) high-resolution observations retrieved by an X-band weather radar in a small domain (the metropolitan area of Cagliari, located in Sardinia, Italy), and (ii) the mosaic data provided by the Italian Civil Protection national radar network (the whole region of Sardinia). Specifically, we here adapt some STEPS procedures to merge the large-scale advection from the latter radar network, and the small-scale statistical properties for the former X-band weather radar. We thus combine the corresponding forecasts preserving the higher resolution scale. In details, for each time step we (i) evaluate the power spectra of the two forecasts (ii) merge the two spectra taking the power of the large (small) frequencies from the high (low) resolution data spectrum and (iii) achieve optimal downscaling by reconstructing the high-resolution nowcast from the blend of the two spectra.</p>

2014 ◽  
Vol 7 (8) ◽  
pp. 8233-8270
Author(s):  
K. Lengfeld ◽  
M. Clemens ◽  
H. Münster ◽  
F. Ament

Abstract. This publication intends to proof that a network of low-cost local area weather radars (LAWR) is a reliable and scientifically valuable complement to nationwide radar networks. A network of four LAWRs has been installed in northern Germany within the framework of the project Precipitation and Attenuation Estimates from a High-Resolution Weather Radar Network (PATTERN) observing precipitation with temporal resolution of 30 s, azimuthal resolution of 1° and spatial resolution of 60 m. The network covers an area of 60 km × 80 km. In this paper algorithms used to obtain undisturbed precipitation fields from raw reflectivity data are described and their performance is analysed. In order to correct for background noise in reflectivity measurements operationally, noise level estimates from the measured reflectivity field is combined with noise levels from the last 10 time steps. For detection of non-meteorological echoes two different kinds of clutter filters are applied: single radar algorithms and network based algorithms that take advantage of the unique features of high temporal and spatial resolution of the network. Overall the network based clutter filter works best with a detection rate of up to 70%, followed by the classic TDBZ filter using the texture of the logarithmic reflectivity field. A comparison of a reflectivity field from the PATTERN network with the product from a C-band radar operated by the German Meteorological Service indicates high spatial accordance of both systems in geographical position of the rain event as well as reflectivity maxima. A longterm study derives good accordance of X-band radar of the network with C-band radar. But especially at the border of precipitation events the standard deviation within a range gate of the C-band radar with range resolution of 1 km is up to 3 dBZ. Therefore, a network of high-resolution low-cost LAWRs can give valuable information on the small scale structure of rain events in areas of special interest, e.g. urban regions, in addition the nationwide radar networks.


2015 ◽  
Vol 19 (3) ◽  
pp. 1547-1559 ◽  
Author(s):  
A. Kann ◽  
I. Meirold-Mautner ◽  
F. Schmid ◽  
G. Kirchengast ◽  
J. Fuchsberger ◽  
...  

Abstract. The ability of radar–rain gauge merging algorithms to precisely analyse convective precipitation patterns is of high interest for many applications, e.g. hydrological modelling, thunderstorm warnings, and, as a reference, to spatially validate numerical weather prediction models. However, due to drawbacks of methods like cross-validation and due to the limited availability of reference data sets on high temporal and spatial scales, an adequate validation is usually hardly possible, especially on an operational basis. The present study evaluates the skill of very high-resolution and frequently updated precipitation analyses (rapid-INCA) by means of a very dense weather station network (WegenerNet), operated in a limited domain of the southeastern parts of Austria (Styria). Based on case studies and a longer-term validation over the convective season 2011, a general underestimation of the rapid-INCA precipitation amounts is shown by both continuous and categorical verification measures, although the temporal and spatial variability of the errors is – by convective nature – high. The contribution of the rain gauge measurements to the analysis skill is crucial. However, the capability of the analyses to precisely assess the convective precipitation distribution predominantly depends on the representativeness of the stations under the prevalent convective condition.


2014 ◽  
Vol 7 (12) ◽  
pp. 4151-4166 ◽  
Author(s):  
K. Lengfeld ◽  
M. Clemens ◽  
H. Münster ◽  
F. Ament

Abstract. This publication intends to prove that a network of low-cost local area weather radars (LAWR) is a reliable and scientifically valuable complement to nationwide radar networks. A network of four LAWRs has been installed in northern Germany within the framework of the Precipitation and Attenuation Estimates from a High-Resolution Weather Radar Network (PATTERN) project observing precipitation with a temporal resolution of 30 s, a range resolution of 60 m and a sampling resolution of 1° in the azimuthal direction. The network covers an area of 60 km × 80 km. In this paper, algorithms used to obtain undisturbed precipitation fields from raw reflectivity data are described, and their performance is analysed. In order to correct operationally for background noise in reflectivity measurements, noise level estimates from the measured reflectivity field are combined with noise levels from the last 10 time steps. For detection of non-meteorological echoes, two different kinds of clutter algorithms are applied: single-radar algorithms and network-based algorithms. Besides well-established algorithms based on the texture of the logarithmic reflectivity field (TDBZ) or sign changes in the reflectivity gradient (SPIN), the advantage of the unique features of the high temporal and spatial resolution of the network is used for clutter detection. Overall, the network-based clutter algorithm works best with a detection rate of up to 70%, followed by the classic TDBZ filter using the texture of the logarithmic reflectivity field. A comparison of a reflectivity field from the PATTERN network with the product from a C-band radar operated by the German Meteorological Service indicates high spatial accordance of both systems in the geographical position of the rain event as well as reflectivity maxima. Long-term statistics from May to September 2013 prove very good accordance of the X-band radar of the network with C-band radar, but, especially at the border of precipitation events, higher-resolved X-band radar measurements provide more detailed information on precipitation structure because the 1 km range gate of C-band radars is only partially covered with rain. The standard deviation within a range gate of the C-band radar with a range resolution of 1 km is up to 3 dBZ at the borders of rain events. The probability of detection is at least 90%, the false alarm ratio less than 10% for both systems. Therefore, a network of high-resolution low-cost LAWRs can give valuable information on the small-scale structure of rain events in areas of special interest, e.g. urban regions, in addition to the nationwide radar networks.


Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2013 ◽  
Vol 6 (6) ◽  
pp. 1961-1975 ◽  
Author(s):  
K. Zink ◽  
A. Pauling ◽  
M. W. Rotach ◽  
H. Vogel ◽  
P. Kaufmann ◽  
...  

Abstract. Simulating pollen concentrations with numerical weather prediction (NWP) systems requires a parameterization for pollen emission. We have developed a parameterization that is adaptable for different plant species. Both biological and physical processes of pollen emission are taken into account by parameterizing emission as a two-step process: (1) the release of the pollen from the flowers, and (2) their entrainment into the atmosphere. Key factors influencing emission are temperature, relative humidity, the turbulent kinetic energy and precipitation. We have simulated the birch pollen season of 2012 using the NWP system COSMO-ART (Consortium for Small-scale Modelling – Aerosols and Reactive Trace Gases), both with a parameterization already present in the model and with our new parameterization EMPOL. The statistical results show that the performance of the model can be enhanced by using EMPOL.


2018 ◽  
Vol 10 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Cristian Lussana ◽  
Tuomo Saloranta ◽  
Thomas Skaugen ◽  
Jan Magnusson ◽  
Ole Einar Tveito ◽  
...  

Abstract. The conventional climate gridded datasets based on observations only are widely used in atmospheric sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or national level, where the challenge is to simulate small-scale processes often taking place in complex terrain. The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957. The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2 daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending on the station network density. In the surroundings of a station or in dense station areas, the predictions are quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2 underestimates precipitation because it does not make use of enough geographical information to compensate for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall–runoff model shows that both models have been able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate for precipitation. The seNorge2 dataset 1957–2015 is available at https://doi.org/10.5281/zenodo.845733. Daily updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/PREC1d/gridded_dataset/catalog.html.


2012 ◽  
Vol 468-471 ◽  
pp. 1274-1277
Author(s):  
Chen Li

Monitoring of precipitation using X-band weather radar systems is becoming popular. X-band weather radar network, as an additional equipment of China new generation weather radar, primarily used to measure weather echo within 3km above the ground and has a high prospect. The network, based on sensor grid, is greater information advantage and network advantage. This paper describes the design, the key technology and implementation of an architectural framework of the weather radar network based on sensor grid. The results show that the network works robustly in real time.


2018 ◽  
Vol 56 (12) ◽  
pp. 6986-6994 ◽  
Author(s):  
Hiroshi Kikuchi ◽  
Tomoo Ushio ◽  
Fumihiko Mizutani ◽  
Masakazu Wada

2021 ◽  
Author(s):  
Richard Maier ◽  
Bernhard Mayer ◽  
Claudia Emde ◽  
Aiko Voigt

<div> <div> <div> <div> <p>The increasing resolution of numerical weather prediction models makes 3D radiative effects more and more important. These effects are usually neglected by the simple 1D independent column approximations used in most of the current models. On top of that, these 1D radiative transfer solvers are also called far less often than the model’s dynamical core.</p> <p>To address these issues, we present a new „dynamic“ approach of solving 3D radiative transfer. Building upon the existing TenStream solver (Jakub and Mayer, 2015), radiation in this 3D model is not solved completely in each radiation time step, but is rather only transported to adjacent grid boxes. For every grid box, outgoing fluxes are then calculated from the incoming fluxes from the neighboring grid cells of the previous time step. This allows to reduce the computational cost of 3D radiative transfer models to that of current 1D solvers.</p> <p>Here, we show first results obtained with this new solver with a special emphasis on heating rates. Furthermore, we demonstrate issues related to the dynamical treatment of radiation as well as possible solutions to these problems.</p> <p>In the future, the speed of this newly developed 3D dynamic TenStream solver will be further increased by reducing the number of spectral bands used in the radiative transfer calculations with the aim to get a 3D solver that can be called even more frequently than the 1D two-stream solvers used nowadays.</p> <p>Reference:<br><span>Jakub, F. and Mayer, B. (2015), A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models—The TenStream solver, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 163, 2015, Pages 63-71, ISSN 0022-4073, . </span></p> </div> </div> </div> </div>


2019 ◽  
Vol 19 (11) ◽  
pp. 2597-2617 ◽  
Author(s):  
Jorge Lorenzo-Lacruz ◽  
Arnau Amengual ◽  
Celso Garcia ◽  
Enrique Morán-Tejeda ◽  
Víctor Homar ◽  
...  

Abstract. An extraordinary convective rainfall event, unforeseen by most numerical weather prediction models, generated a devastating flash flood (305 m3 s−1) in the town of Sant Llorenç des Cardassar, Mallorca, on 9 October 2018. Four people died inside this village, while casualties were up to 13 over the entire affected area. This extreme event has been reconstructed by implementing an integrated flash flood modelling approach in the Ses Planes catchment up to Sant Llorenç (23.4 km2), based on three components: (i) generation of radar-derived precipitation estimates, (ii) modelling of accurate discharge hydrographs yielded by the catchment (using FEST and KLEM models), and (iii) hydraulic simulation of the event and mapping of affected areas (using HEC-RAS). Radar-derived rainfall estimates show very high agreement with rain gauge data (R2=0.98). Modelled flooding extent is in close agreement with the observed extension by the Copernicus Emergency Management Service, based on Sentinel-1 imagery, and both far exceed the extension for a 500-year return period flood. Hydraulic simulation revealed that water reached a depth of 3 m at some points, and modelled water depths highly correlate (R2=0.91) with in situ after-event measurements. The 9 October flash flood eroded and transported woody and abundant sediment debris, changing channel geomorphology. Water velocity greatly increased at bridge locations crossing the river channel, especially at those closer to the Sant Llorenç town centre. This study highlights how the very low predictability of this type of extreme convective rainfall events and the very short hydrological response times typical of small Mediterranean catchments continue to challenge the implementation of early warning systems, which effectively reduce people's exposure to flash flood risk in the region.


Sign in / Sign up

Export Citation Format

Share Document