Seismic attenuation analysis in the central part of the Leipzig-Regensburg fault zone using the Multiple Lapse Time Window Analysis and Qopen

Author(s):  
Marcel van Laaten ◽  
Tom Eulenfeld ◽  
Ulrich Wegler

<p>Seismic attenuation provides valuable information about the structure of the crust. For the analysis of seismic attenuation in the central part of the Leipzig-Regensburg fault zone in Germany, where numerous areas of intracontinental earthquake swarms are located, we use 18 of the region's strongest earthquakes from the period 2008 to 2019 with a magnitude between 1.4 and 3.0 in the frequency range between 3 and 34 Hz. Two different methods were used to determine the frequency-dependent scattering and the intrinsic attenuation on one hand and to compare the two methods with respect to their results on the other hand. Both methods, the Multiple Lapse Time Windows Analysis (MLTWA) and the Qopen method use the acoustic radiative transfer theory for forward modelling to generate synthetic data and fit them to the observed data. As a by-product of Qopen, we also obtain the energy site amplifications of the stations used in the inversion, as well as the estimated moment magnitudes of the inverted earthquakes. In addition, factors that influence the inversion were investigated. Different combinations of inversion parameters were tested for the MLTWA, as well as the influence of the window length on the result of Qopen. The results from both methods provide similar results within their error bars, with intrinsic attenuation being stronger than scattering and overall, rather low attenuation values compared to other regions.</p>

2019 ◽  
Vol 14 (02) ◽  
pp. 2050006
Author(s):  
Ia Shengelia ◽  
Nato Jorjiashvili ◽  
Tea Godoladze ◽  
Zurab Javakhishvili ◽  
Nino Tumanova

Three hundred and thirty-five local earthquakes were processed and the attenuation properties of the crust in the Racha region were investigated using the records of seven seismic stations. We have estimated the quality factors of coda waves ([Formula: see text]) and the direct [Formula: see text] waves ([Formula: see text]) by the single back scattering model and the coda normalization methods, respectively. The Wennerberg’s method has been used to estimate relative contribution of intrinsic ([Formula: see text]) and scattering ([Formula: see text]) attenuations in the total attenuation. We have found that [Formula: see text] and [Formula: see text] parameters are frequency-dependent in the frequency range of 1.5–24[Formula: see text]Hz. [Formula: see text] values increase both with respect to lapse time window from 20[Formula: see text]s to 60[Formula: see text]s and frequency. [Formula: see text] and [Formula: see text] parameters are nearly similar for all frequency bands, but are smaller than [Formula: see text]. The obtained results show that the intrinsic attenuation has more significant effect than scattering attenuation in the total attenuation. The increase of [Formula: see text] with lapse time shows that the lithosphere becomes more homogeneous with depth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Zafar Iqbal ◽  
Tae Woong Chung ◽  
Myung Jin Nam ◽  
Kazuo Yoshimoto

AbstractSeparated attenuation values have not been used in post-seismic variation research, although the scattering attenuation (Qs−1) parameter that can be used to estimate crustal inhomogeneity due to cracks. In this study, three earthquakes that occurred in Kumamoto (M7.3), Tottori (M6.6), and Gyeongju (M5.8) in 2016 were investigated by applying a multiple lapse time window analysis to seismograms recorded before and after the events. At a low frequency, significantly greater variation of the Qs−1 value was observed than the intrinsic attenuation (Qi−1) for the Kumamoto earthquake, whereas similarly large variation was observed for the Gyeongju earthquake. For the surrounding Kumamoto earthquake area of increased attenuation, even higher decreases in Qs–1 and Qi–1 were also observed. The increases occurred within a two year-period after mainshock. The large increases in attenuation, corresponding to regions with high peak ground acceleration, were limited to the basin area with an elevation below 500 m. Furthermore, post-seismic increases in attenuation values were found to correlate with the magnitude and length of the quiet periods of the earthquakes. From this study, Qs–1 and Qi–1 were shown as new parameters that can quantitatively measure the post-seismic deformation due to crustal earthquake.


Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. WA123-WA135 ◽  
Author(s):  
Carl Reine ◽  
Mirko van der Baan ◽  
Roger Clark

Frequency-based methods for measuring seismic attenuation are used commonly in exploration geophysics. To measure the spectrum of a nonstationary seismic signal, different methods are available, including transforms with time windows that are either fixed or systematically varying with the frequency being analyzed. We compare four time-frequency transforms and show that the choice of a fixed- or variable-window transform affects the robustness and accuracy of the resulting attenuation measurements. For fixed-window transforms, we use the short-time Fourier transform and Gabor transform. The S-transform and continuous wavelet transform are analyzed as the variable-length transforms. First we conduct a synthetic transmission experiment, and compare the frequency-dependent scattering attenuation to the theoretically predicted values. From this procedure, we find that variable-window transforms reduce the uncertainty and biasof the resulting attenuation estimate, specifically at the upper and lower ends of the signal bandwidth. Our second experiment measures attenuation from a zero-offset reflection synthetic using a linear regression of spectral ratios. Estimates for constant-[Formula: see text] attenuation obtained with the variable-window transforms depend less on the choice of regression bandwidth, resulting in a more precise attenuation estimate. These results are repeated in our analysis of surface seismic data, whereby we also find that the attenuation measurements made by variable-window transforms have a stronger match to their expected trend with offset. We conclude that time-frequency transforms with a systematically varying time window, such as the S-transform and continuous wavelet transform, allow for more robust estimates of seismic attenuation. Peaks and notches in the measured spectrum are reduced because the analyzed primary signal is better isolated from the coda, and because of high-frequency spectral smoothing implicit in the use of short-analysis windows.


2020 ◽  
Vol 223 (2) ◽  
pp. 1418-1431
Author(s):  
Rahul Biswas ◽  
Chandrani Singh

SUMMARY 2-D attenuation maps are produced for the crust of western Tibet using local earthquakes which are recorded by an array of 31 broad-band stations operated from 2007 July to 2011 May. Relative contribution of scattering ($Q_{sc}^{-1}$) and intrinsic ($Q_{i}^{-1}$) attenuation have been calculated using Multiple Lapse Time Window Analysis under the assumption of uniform distribution of multiple isotropic scattering and intrinsic absorption in a medium for five different frequency bands centred at 1.5, 3, 6, 12 and 18 Hz, respectively. All the events are selected on the basis of high signal-to-noise ratio having hypocentral distance within 200 km from the respective stations. The obtained Q−1 values show a strong frequency dependent nature which can be correlated to the degree of tectonic complexity and the heterogeneities present in the medium. The intrinsic absorption is found to be the dominant mechanism at all the frequency ranges for all stations except few (WT03, WT07 and WT13) at 18 Hz, which may be correlated with the presence of partial melt, geothermal fluids, hydrothermal springs, mantle-derived fluids and radioactivity in the crust of western Tibet. We have divided the entire area into two regions across the Karakoram fault (KKF) to explore the variations of crustal attenuation properties. The first part covers the northeastern of KKF referred as Region 1 while the second part covers the southwestern of KKF referred as Region 2. The spatial variations of $Q_{i}^{-1}$ across the region exhibit significant differences between Regions 1 and 2 at all the investigated frequencies. Interestingly, Region 1 exhibits higher $Q_{i}^{-1}$ than Region 2 at lower frequencies, whereas $Q_{i}^{-1}$ shows opposite trends at higher frequencies (> 6 Hz) as it shows higher values in Region 2 than Region 1. We find that the obtained values of Q−1 are also in good agreement with the other segments of Himalaya and Tibet as well as different tectonic regions in the world.


1997 ◽  
Vol 87 (3) ◽  
pp. 778-781
Author(s):  
Takehi Isse ◽  
Ichiro Nakanishi

Abstract To estimate Qscs, previous studies used the spectral ratios of multiple ScS phases calculated for specific time windows. They assumed that the spectral ratios had linear relation with frequency. However, the spectral ratios very often did not seem to be linear, and the error bars were very large for frequencies higher than about 0.05 Hz. We have performed numerical experiments to search for the cause of these anomalies and found that they are caused by the multiple reflection in the crust under the surface bounce point of ScS2. A method of suppressing the anomalies is to start the time of the time window at 40 sec prior to the theoretical arrival times of the multiple ScS phases. In numerical tests, the difference between the correct and estimated values of Qscs is only 0 to 5% using this method, but it is 10 to 50% in the conventional method. We find that the crustal effect is more important in the estimation of Qscs than background noise, which has been readily handled in previous studies using standard stacking techniques.


Author(s):  
Hongguang Wu ◽  
Yuelin Gao ◽  
Wanting Wang ◽  
Ziyu Zhang

AbstractIn this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony (HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters; and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results show that it is applicable and effective in practical problems.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Christian Tilk ◽  
Katharina Olkis ◽  
Stefan Irnich

AbstractThe ongoing rise in e-commerce comes along with an increasing number of first-time delivery failures due to the absence of the customer at the delivery location. Failed deliveries result in rework which in turn has a large impact on the carriers’ delivery cost. In the classical vehicle routing problem (VRP) with time windows, each customer request has only one location and one time window describing where and when shipments need to be delivered. In contrast, we introduce and analyze the vehicle routing problem with delivery options (VRPDO), in which some requests can be shipped to alternative locations with possibly different time windows. Furthermore, customers may prefer some delivery options. The carrier must then select, for each request, one delivery option such that the carriers’ overall cost is minimized and a given service level regarding customer preferences is achieved. Moreover, when delivery options share a common location, e.g., a locker, capacities must be respected when assigning shipments. To solve the VRPDO exactly, we present a new branch-price-and-cut algorithm. The associated pricing subproblem is a shortest-path problem with resource constraints that we solve with a bidirectional labeling algorithm on an auxiliary network. We focus on the comparison of two alternative modeling approaches for the auxiliary network and present optimal solutions for instances with up to 100 delivery options. Moreover, we provide 17 new optimal solutions for the benchmark set for the VRP with roaming delivery locations.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ilaria Izzo ◽  
Canio Carriero ◽  
Giulia Gardini ◽  
Benedetta Fumarola ◽  
Erika Chiari ◽  
...  

Abstract Background Brescia Province, northern Italy, was one of the worst epicenters of the COVID-19 pandemic. The division of infectious diseases of ASST (Azienda Socio Sanitaria Territoriale) Spedali Civili Hospital of Brescia had to face a great number of inpatients with severe COVID-19 infection and to ensure the continuum of care for almost 4000 outpatients with HIV infection actively followed by us. In a recent manuscript we described the impact of the pandemic on continuum of care in our HIV cohort expressed as number of missed visits, number of new HIV diagnosis, drop in ART (antiretroviral therapy) dispensation and number of hospitalized HIV patients due to SARS-CoV-2 infection. In this short communication, we completed the previous article with data of HIV plasmatic viremia of the same cohort before and during pandemic. Methods We considered all HIV-patients in stable ART for at least 6 months and with at least 1 available HIV viremia in the time window March 01–November 30, 2019, and another group of HIV patients with the same two requisites but in different time windows of the COVID-19 period (March 01–May 31, 2020, and June 01–November 30, 2020). For patients with positive viremia (PV) during COVID-19 period, we reported also the values of viral load (VL) just before and after PV. Results: the percentage of patients with PV during COVID-19 period was lower than the previous year (2.8% vs 7%). Only 1% of our outpatients surely suffered from pandemic in term of loss of previous viral suppression. Conclusions Our efforts to limit the impact of pandemic on our HIV outpatients were effective to ensure HIV continuum of care.


Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


Sign in / Sign up

Export Citation Format

Share Document