scholarly journals Polygonal frost patterned ground as a Mars analogue in Northern Victoria Land, Antarctica

Author(s):  
Cynthia Sassenroth ◽  
Ernst Hauber ◽  
Carlo Baroni ◽  
Maria Cristina Salvatore ◽  
Jean-Pierre De Vera ◽  
...  

<p>Polygonal patterned ground is ubiquitous in the martian mid-latitudes and in the polar regions of Earth. The latitude dependence of martian patterned ground and its morphological similarity to terrestrial patterned ground suggests that thermal contraction cracking may have been the leading formation mechanism for those polygons. Due to a lack of ground truthing on martian patterned ground, the role of liquid water in its formation and   weather freeze-thaw processes lead to their origin is still debated. This study uses a quantitative approach, based on geomorphometrical and soil characteristics of patterned ground in continental Antarctica and glacial deposits with low inclination of Terra Nova Bay as terrestrial analogues, to understand polygon formation in martian hyper-arid conditions.  We investigated polygons in ice-free parts of the mountain range of Helliwell Hills (~71°43S / 161°2E) in continental Antarctica and the Northern Foothills in the coastal Terra Nova Bay area (74°45S / 164°E).</p><p>Field observations were made during the austral summer on the GANOVEX XI and GANOVEX XIII expeditions in Dec-Jan 2015/2016 and Oct-Nov 2018, respectively. The polygonal troughs have been mapped and digitized in ArcGIS based on high resolution satellite images. For Helliwell Hills we used World View 2 images with a pixel size of 50 cm. For Terra Nova Bay, Quickbird satellite imagery has been used with a pixel size of 60 cm. Based on these datasets, parameters such as area, perimeter, length, and width have been measured, and size, circularity, orientation, and aspect ratio of each polygon were derived from these measurements. Additionally, we used a DTM derived from World View 2 stereo imagery (ground sampling distance: 8 m) to calculate the average slope, aspect, and solar irradiation of each polygon. The quantitative analysis shows that the geomorphometric characteristics of polygons in the Helliwell Hills differ significantly from those in Terra Nova Bay. Polygons in the Helliwell Hills are significantly smaller than in Terra Nova Bay and are organized as orthogonal, random-orthogonal and hexagonal polygon networks, while all polygons in Terra Nova Bay form hexagonal polygon-net geometries. The correlation of polygon-net geometries and the slope gradient shows that hexagonal polygon-net geometries dominate in flat terrains, while orthogonal geometries have developed on steeper slopes or in the immediate proximity of sharp terrain margins such as topographic slopes. The polygons in Helliwell Hills do not display significant local relief, but overall, the polygon centres are slightly higher than the bounding cracks (i.e. high-centered polygons). In Terra Nova Bay the appearance of high centred polygons and a deeper trough is even more developed and well distinguishable on satellite images.</p><p>During the fieldwork in Helliwell Hills, excavations were made in the center of polygons and across the bounding cracks. Typically, the uppermost ∼40 cm of regolith are dry and unconsolidated. Below that, there is commonly a sharp transition to ice-cemented material or very clear ice with no bubbles. The grain size analysis indicated no significant trend of sorting. We will present the results of our analysis and compare them with selected polygon sites on Mars.</p>

2010 ◽  
Vol 42 (4) ◽  
pp. 429-437 ◽  
Author(s):  
M. CASTELLO

AbstractFive taxa of the genera Omphalodina and Rhizoplaca known from continental Antarctica are reassessed in order to identify a remarkable species collected from northern Victoria Land, for which the new combination Rhizoplaca macleanii (C.W. Dodge) Castello is proposed here. This poorly known species is known only from continental Antarctica. Two synonyms are discussed: Omphalodina exsulans (Th. Fr.) C. W. Dodge and O. siplei (C. W. Dodge & G. E. Baker) C. W. Dodge are synonyms of Rhizoplaca melanophthalma (DC.) Leuckert & Poelt. The correct name of another species is Tephromela priestleyi (C. W. Dodge) Øvstedal. The name O. johnstonii (C. W. Dodge) C. W. Dodge should be abandoned, type material being too scanty for a reliable identification. A contribution to the flora of the Terra Nova Bay area (northern Victoria Land) is provided, with two additional species, including Buellia vilis Th. Fr. new to Antarctic regions, and two nomenclatural corrections.


2019 ◽  
Vol 75 ◽  
pp. 01003 ◽  
Author(s):  
Egor Dmitriev ◽  
Vladimir Kozoderov ◽  
Sergey Donskoy ◽  
Petr Melnik ◽  
Anton Sokolov

A method for automated processing high spatial resolution satellite images is proposed to retrieve inventory and bioproductivity parameters of forest stands. The method includes effective learning classifiers, inverse modeling, and regression modeling of the estimated parameters. Spectral and texture features are used to classify forest species. The results of test experiments for the selected area of Savvatievskoe forestry (Russia, Tver region) are presented. Accuracy estimates obtained using ground-based measurements demonstrate the effectiveness of using the proposed techniques to automate the process of updating information for the State Forest Inventory program of Russia.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.


2021 ◽  
pp. 1-11
Author(s):  
Yasser Mostafa ◽  
Mahmoud Nokrashy O. Ali ◽  
Faten Mostafa ◽  
Mohamed Yousef

Author(s):  
Ali Amasha

Abstract Background The flash flood still constitutes one of the major natural meteorological disasters harmfully threatening local communities, that creates life losses and destroying infrastructures. The severity and magnitude of disasters always reflected from the size of impacts. Most of the conventional research models related to flooding vulnerability are focusing on hydro-meteorological and morphometric measurements. It, however, requires quick estimate of the flood losses and assess the severity using reliable information. An automated zonal change detection model applied, using two high-resolution satellite images dated 2009 and 2011 coupled with LU/LC GIS layer, on western El-Arish City, downstream of Wadi El-Arish basin. The model enabled to estimate the severity of a past flood incident in 2010. Results The model calculated the total changes based on the before and after satellite images based on pixel-by-pixel comparison. The estimated direct-damages nearly 32,951 m2 of the total mapped LU/LC classes; (e.g., 11,407 m2 as 3.17% of the cultivated lands; 6031 m2 as 7.22% of the built-up areas and 4040 m2 as 3.62% of the paved roads network). The estimated cost of losses, in 2010 economic prices for the selected three LU/LC classes, is nearly 25 million USD, for the cultivation fruits and olives trees, ~ 4 million USD for built-up areas and ~ 1 million USD for paved roads network. Conclusion The disasters’ damage and loss estimation process takes many detailed data, longtime, and costed as well. The applied model accelerates the disaster risk mapping that provides an informative support for loss estimation. Therefore, decision-makers and professionals need to apply this model for quick the disaster risks management and recovery.


Sign in / Sign up

Export Citation Format

Share Document