An algorithm for the 3D ROck Slope Kinematic Analysis (ROKA) based on RPAS digital photogrammetry data.

Author(s):  
Niccolò Menegoni ◽  
Daniele Giordan ◽  
Cesare Perotti

<p>Among the several adopted methods for the kinematic analysis of the possible modes of failure that could affect a rock slope, the Markland test is the most used. Whereas, it has the advantage of being simple and fast, it has some limits, as the impossibility to manually consider the several different slope orientations and their interaction with the discontinuity dimensions and positions.</p><p>Recently, the improvements in the Remote Piloted Aerial System (RPAS) digital photogrammetry techniques for the development and mapping of Digital Outcrop Models (DOMs) have given the possibility of developing new automatized digital approaches. In this study, ROKA (ROck slope Kinematic Analysis) algorithm is presented. It is an open-source algorithm, written in MATLAB language, which aims to perform the kinematic analysis of the stability of a rock slope using the discontinuity measurements collected onto 3D DOMs. Its main advantage is the possibility to identify the possible critical combination between the 3D georeferenced discontinuities and the local surface of the slope. In particular, the critical combinations that can activate the planar sliding, flexural toppling, wedge sliding and direct toppling modes of failures can be detected and highlighted directly on the DOM. Hence, the ROKA algorithm can make the traditional approach for the kinematic analysis of a rock slope more effective, allowing not only to simplify the analysis, but also to increase its detail. This can be very important, in particular, for the analysis of large and complex rock slopes.</p>

2021 ◽  
Vol 11 (4) ◽  
pp. 1698
Author(s):  
Niccolò Menegoni ◽  
Daniele Giordan ◽  
Cesare Perotti

The Markland test is one of the most diffused and adopted methods of kinematic analysis for the identification of critical intersections of rock discontinuities that could generate rock failures. Traditionally, the kinematic analysis is based on the use of a stereographic approach that is able to identify the critical combination between the orientations of discontinuities and the rock wall. The recent improvements in the use of Digital Outcrop Models (DOMs) created the conditions for the development of a new automatized approach. We present ROck Slope Kinematic Analysis (ROKA) which is an open-source algorithm aimed at performing the Kinematic Analysis using the discontinuity measures collected onto a 3D DOM. The presented algorithm is able to make a local identification of the possible critical combination between the identified discontinuities and the orientation of the slope. Using this approach, the algorithm is able to identify on the slope the presence of critical combinations according to the traditional kinematic analysis of planar failure, flexural toppling, wedge failure, and direct toppling modes of failures and then visualize them on DOMs. In this way, the traditional approach is more effective and can be adopted for a more detailed analysis of large and complex areas.


2020 ◽  
pp. 550-566
Author(s):  
Summood A. Hussien ◽  
Manal Sh. Al-Kubaisi ◽  
Ghafor A. Hamasur

The road network in Surdash anticline is considered as an important road network connecting lower Dukan town with the touristic upper Dukan town. Dukan lake plays an important role in the social and economic activities of Dukan town and the surrounding areas.For assessing the stability of the rock slopes in the area, 9 stations were selected along the upper Dukan road on both sides of Surdash anticline, and their stability was evaluated by the kinematic analysis using DIPS V6.008 software. Kinematic analysis of the studied stations shows thatplanar sliding is possible in stations No. 1, 2, 3 and 8, while wedge sliding is possible in station No. 5, 6, 7 and 9b. The other stations (No. 4and 9a) are stable. Tectonic structures played an extra paradoxical role in the stability of the rock slopes and the type of failure. In most ofthe selected stations , the geological structure had a negative role, which supported or promoted the failure in the study area. However, in few stations , it had a positive role and converted the slope from unstable to stable conditions. In addition, the presence of incongruent minor syncline folds, especially in the SW-limb of themajor anticline, led to the occurring of wedge sliding instead of plane sliding. 


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


2011 ◽  
Vol 368-373 ◽  
pp. 781-784
Author(s):  
Yong Zhang ◽  
De Xin Nie ◽  
Jiang Da He

In the process of evaluating the stability of some rock slopes, the discontinuities which mainly destroy the stability of future slope can not be understood and the locations of the slope can not be determined because of lacking of the exploration data. This paper determines the combination molds and the location of potential sliding surfaces using the method of crack network simulation to do statistics about all the discontinuities, which aims to resolving the problems of determining the locations and idiographic conformations of potential sliding surfaces in the rock slope.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Faridha Aprilia ◽  
I Gde Budi Indrawan

The stability of rock slopes is controlled by several factors, such as the intact rock strength, discontinuity characteristics, groundwater condition, and slope geometry. Limit equilibrium (LE) analyses have been commonly used in geotechnical practice to evaluate the stability of rock slopes. A number of methods of LE analyses, ranging from simple to sophisticated methods, have been developed. This paper presents stability analyses of rock slopes at the Batu Hijau open mine in Sumbawa Barat using various methods of LE analyses. The LE analyses were conducted at three cross sections of the northern wall of the open mine using the Bishop Simplified, Janbu Simplified, Janbu Generalised, and General Limit Equilibrium (GLE) methods in Slide slope stability package. In addition, a Plane Failure (PF) analysis was performed manually. Shear strength data of the discontinuity planes used in the LE analyses were obtained from back analyses of previous rock slope failures. The LE analysis results showed that the rock slopes were likely to have shallow non-circular critical failure surfaces. The factor of safety (Fs) values obtained from the Bishop Simplified, Janbu Simplified, Janbu Generalised, and GLE methods were found to be similar, while the Fs values obtained from the PF method were higher than those obtained from the more rigorous methods. Keywords: Batu Hijau mine, Bishop Simplified, Janbu Simplified, Janbu Generalised, limit equilibrium analyses, general limit equilibrium, rock slope stability, plane failure.


2019 ◽  
Vol 276 ◽  
pp. 05007
Author(s):  
Soewignjo Agus Nugroho ◽  
Muhamad Yusa ◽  
Andarsin Ongko

As a part of natural geography systems, rock slopes have treasured amount of natural resources potential. The rock materials could be utilized to fulfill several needs, especially to construct buildings. However, society sometimes have taken advantages from the slope’s existence in wrong ways. The exploitations toward rock materials, either through manual or modern way (blasting) have caused some cracks occurred. These cracks have reduced the stability of rock slopes and easily triggered failures on rock slopes. In this paper, the stability of a rock slope will be precisely discussed by using Geological Strength Index (GSI) and was analyzed by using finite element method. The rock samples were taken from Pangkalan (West Sumatera, Indonesia), which this location is also vulnerable to rock slope failures. Geological Strength Index was obtained by doing manual observations on rock sample’s properties, i.e. joint, cracks, and discontinuity. The result was consisted of rock’s properties. Meanwhile, the analysis by using finite element method produced an outcome in form of safety factor. This result could be made as a reference for pre-disaster mitigation in Pangkalan.


2021 ◽  
Author(s):  
Tianbai Zhou ◽  
Lingfan Zhang ◽  
Jian Cheng ◽  
Jianming Wang ◽  
Xiaoyu Zhang ◽  
...  

Abstract Due to long-term mining, a series of high and steep rock slopes have been formed in the open-pit mine. For high rock slopes, rainfall infiltration is the main cause of landslide. Therefore, the stability analysis of high rock slope under rainfall has become a key issue in the open-pit mine engineering. In this work, aiming at the high stress condition of high rock slope, the instantaneous internal friction angle and instantaneous cohesion of rock mass under different stress states are deduced, and the a nonlinear strength reduction method for high rock slope is established according to the relationship between normal stress and shear stress of rock mass under the Hoke-Brown criterion. The numerical calculation results show that the factor of safety (FOS) for high rock slope calculated by the proposed method is more reasonable. Taking the southwest slope of Dagushan Iron Mine as the research background, the safety factors of high rock slope under different rainfall conditions are calculated by COMSOL Multiphysics. And the stability analysis of high rock slope in open-pit mine under rainfall are carried out.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongliang Tao ◽  
Guangli Xu ◽  
Jingwen Meng ◽  
Ronghe Ma ◽  
Jiaxing Dong

The stability of high rock slopes has become a key engineering geological problem in the construction of important projects in mountainous areas. The original slope stability probability classification (SSPC) system, presented by Hack, has made obvious progress and been widely used in rock slope stability analysis. However, the selection and determination of some evaluation indexes in the original SSPC method are usually subjective, such as intact rock strength and weathering degree. In this study, the SSPC method based on geological data obtained in the prospecting tunnels was presented and applied. According to the field survey and exploration of the prospecting tunnels, the weathering degree of the slope rock mass was evaluated. The empirical equation for the maximum stable height of the slope was applied to the slope stability evaluation in the presented SSPC method. Then, the slope stability probability of numerous cutting slopes in the sandstone unit was evaluated using the presented system. Results of the Geostudio software based on the limited equilibrium analysis of the investigated slopes were compared with the results obtained by the SSPC method. The results indicate that the SSPC method is a useful tool for the stability prediction of high and steep rock slopes.


2012 ◽  
Vol 1 (33) ◽  
pp. 10
Author(s):  
Marcel Van Gent ◽  
Gregory M. Smith ◽  
Ivo Van der Werf

The stability of rock slopes with a horizontal berm has been studied by means of physical model tests. This paper is focussed on the rock slope stability of the slopes above and below the berm. By applying a berm the rock size can be reduced compared to the required rock size for a straight slope without a berm. This reduction can be significant for the slope above the berm. The influence of the slope angle (1:2 and 1:4), the width of the berm, the level of the berm, and the wave steepness have been investigated. Based on the test results prediction formulae have been derived to quantify the required rock size for rubble mound breakwaters with a berm.


Sign in / Sign up

Export Citation Format

Share Document