How do recent depositional processes changes in high altitude Pyrenean lakes compare with Late Holocene variability? The case of Montmalús Lake (Principality of Andorra, Eastern Pyrenees)

Author(s):  
Marcel-Saïd Galofré ◽  
Fernando Barreiro ◽  
Iván Santamaría ◽  
Ramón Copons ◽  
Benjamin Komack ◽  
...  

<p>High mountain lakes are pristine ecosystems that archive in their sediments high-resolution records of watershed and lake evolution. Understanding how they have responded to Holocene climate fluctuations and anthropic impacts provides essential information to put into a historical context the magnitude and unique features of the current global change.</p><p>The REPLIM project funded by the Interreg program (POCTEFA 2014-2020) has implemented a network of lakes in Spain, France and Andorra to study current and past climate, environmental and anthropic changes in lakes. In August 2017, eight short sediment cores were recovered in Montmalús Lake (2433 m a.s.l., Andorra). We present a paleolimnological reconstruction based on sedimentary facies, chemical (main and trace element) analyses and δ<sup>13</sup>C and δ<sup>15</sup>N of bulk organic matter. We developed a robust age model based on <sup>210</sup>Pb, <sup>137</sup>Cs and <sup>14</sup>C dating for the last 2000 years. Moreover, modern lake dynamics have been characterized with continuous water temperature measurements at various depths, periodical water sampling and sediment traps.</p><p>The results show large depositional fluctuations in the lake dynamics, especially during the Little Ice Age, with changes in organic matter accumulation, bioproductivity and sources and increased sediment delivery. Sedimentological and geochemical indicators point to the onset of high human impact in the landscape around the 11<sup>th</sup> century. Also, medieval mining and metallurgic activity from 11<sup>th</sup> to 14<sup>th</sup> centuries increased Pb deposition.</p><p>The 20<sup>th</sup> century is characterized by a recovery in organic accumulation and bioproductivity rates. Heavy metal deposition also increased during the late 20<sup>th</sup> century and started to decrease in the 2010’s decade, without reaching the background values</p><p>This study provides the first data on recent changes in lakes from the Principality of Andorra. The results highlight the uniqueness of current global change impacts in alpine lakes and underline the interplay of Great Acceleration and Global Warming processes in these fragile and sensitive depositional systems.</p>

2016 ◽  
Author(s):  
Laurent Fouinat ◽  
Pierre Sabatier ◽  
Jérôme Poulenard ◽  
Jean-Louis Reyss ◽  
Xavier Montet ◽  
...  

Abstract. In recent years, wet avalanche deposits have become a subject of increasing concern in a context of both global change and winter mountain tourism activities. This study focuses on the use of a new methodology based on CT scans to identify snow avalanche deposits in lake sediment. Here, we study the mid-elevation Lake Lauvitel system (western French Alps), which features steep slopes and avalanche corridors. CT scanning is a fast, non-destructive method based on X-ray technology and allows the identification of elements with different densities. We applied this method to sediment cores, leading to the 3D identification of the dense rocks and organic matter macroremains that characterize wet avalanches. A total of eight periods of higher avalanche activity are identified since AD 1880 at the site. This new methodology is suitable for avalanche deposit reconstruction and may be applicable more widely in paleolimnological studies.


1989 ◽  
Vol 24 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Alena Mudroch ◽  
K. Hill

Abstract Sediment cores were collected in Lake St. Clair in 1985 and in the St. Clair River in 1986 to investigate the horizontal and vertical distribution and association of Hg in the sediments. A layer of recent sediment up to about 35 cm thick was differentiated by the geochemical composition and visual appearance from the underlying glacial-lacustrine deposits. The concentration of Hg in the surficial sediments in Lake St. Clair was lower in 1985 (<0.025 to 1.200 µg/g) than that found in 1974 (<0.20 to 3.00 µg/g). Up to 8.30 µg/g of Hg were found in the sediments collected from the nearshore area at Sarnia, Ontario, in the St. Clair River in 1986. The concentrations of Hg ranged from 5.05 to 16.00 µg/g in different sand-sized fractions (0.063 to 0.350 mm) of the sediment. The concentration of Hg was 17.80 µg/g in the silt-clay size fraction (<0.063 mm). No relationship was found between the concentration of organic matter and Hg, and the concentration of silica and Hg in the St. Clair River sediments. The results indicated a relationship of Hg with particles of different mineralogical composition. Up to 3.72 µg/g Hg was found in the surface sediment in Chenal Ecarte. The greatest concentration of Hg (13.15 µg/g) existed in the 0.350 mm particle size fraction, which consisted mainly of small pieces of decaying wood. A good relationship was found between the concentration of Hg and organic matter in the sediment at this area.


2018 ◽  
Vol 15 (12) ◽  
pp. 3893-3908 ◽  
Author(s):  
Dina Spungin ◽  
Natalia Belkin ◽  
Rachel A. Foster ◽  
Marcus Stenegren ◽  
Andrea Caputo ◽  
...  

Abstract. The fate of diazotroph (N2 fixers) derived carbon (C) and nitrogen (N) and their contribution to vertical export of C and N in the western tropical South Pacific Ocean was studied during OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment). Our specific objective during OUTPACE was to determine whether autocatalytic programmed cell death (PCD), occurring in some diazotrophs, is an important mechanism affecting diazotroph mortality and a factor regulating the vertical flux of organic matter and, thus, the fate of the blooms. We sampled at three long duration (LD) stations of 5 days each (LDA, LDB and LDC) where drifting sediment traps were deployed at 150, 325 and 500 m depth. LDA and LDB were characterized by high chlorophyll a (Chl a) concentrations (0.2–0.6 µg L−1) and dominated by dense biomass of the filamentous cyanobacterium Trichodesmium as well as UCYN-B and diatom–diazotroph associations (Rhizosolenia with Richelia-detected by microscopy and het-1 nifH copies). Station LDC was located at an ultra-oligotrophic area of the South Pacific gyre with extremely low Chl a concentration (∼ 0.02 µg L−1) with limited biomass of diazotrophs predominantly the unicellular UCYN-B. Our measurements of biomass from LDA and LDB yielded high activities of caspase-like and metacaspase proteases that are indicative of PCD in Trichodesmium and other phytoplankton. Metacaspase activity, reported here for the first time from oceanic populations, was highest at the surface of both LDA and LDB, where we also obtained high concentrations of transparent exopolymeric particles (TEP). TEP were negatively correlated with dissolved inorganic phosphorus and positively coupled to both the dissolved and particulate organic carbon pools. Our results reflect the increase in TEP production under nutrient stress and its role as a source of sticky carbon facilitating aggregation and rapid vertical sinking. Evidence for bloom decline was observed at both LDA and LDB. However, the physiological status and rates of decline of the blooms differed between the stations, influencing the amount of accumulated diazotrophic organic matter and mass flux observed in the traps during our experimental time frame. At LDA sediment traps contained the greatest export of particulate matter and significant numbers of both intact and decaying Trichodesmium, UCYN-B and het-1 compared to LDB where the bloom decline began only 2 days prior to leaving the station and to LDC where no evidence for bloom or bloom decline was seen. Substantiating previous findings from laboratory cultures linking PCD to carbon export in Trichodesmium, our results from OUTPACE indicate that nutrient limitation may induce PCD in high biomass blooms such as displayed by Trichodesmium or diatom–diazotroph associations. Furthermore, PCD combined with high TEP production will tend to facilitate cellular aggregation and bloom termination and will expedite vertical flux to depth.


2017 ◽  
Vol 68 (9) ◽  
pp. 1704 ◽  
Author(s):  
Leandro Bergamino ◽  
Mark Schuerch ◽  
Adriana Tudurí ◽  
Silvina Carretero ◽  
Felipe García-Rodríguez

We investigated carbon isotopic ratios (δ13C) v. carbon to nitrogen (C : N) ratios for surface sediments throughout a large estuarine system (Río de la Plata, RdlP), combined with sediment cores from adjacent marshes to infer main carbon sources. We also evaluated the influence of the El Niño–Southern Oscillation (ENSO) and associated high freshwater-discharge events on the organic-matter transport within the estuary. The isotopic pattern in surface sediments of the RdlP showed the upper reaches to be influenced by riverine particulate matter (δ13C range: –24 to –26‰). Similarly, in the sediment cores from marshes of the upper reaches, δ13C values decreased from –24‰ in ancient sediments to –28‰ in recent sediments, reflecting an increased contribution of organic matter from land, including C3 plants and freshwater phytoplankton, during the past 50 years. However, the lower reaches represent a depositional environment of marine algae (δ13C range: –21 to –23‰), with no influence of detritus from adjacent marshes, indicating minor erosion of the marshes in the lower reaches operating as carbon-sink habitats. Our isotopic analysis showed that the transport and deposition of terrigenous organic matter within the RdlP and adjacent marsh habitat appear to be both temporally and spatially linked to hydrology patterns.


2021 ◽  
Author(s):  
Melanie Münch ◽  
Rianne van Kaam ◽  
Karel As ◽  
Stefan Peiffer ◽  
Gerard ter Heerdt ◽  
...  

<p>The decline of surface water quality due to excess phosphorus (P) input is a global problem of increasing urgency. Finding sustainable measures to restore the surface water quality of eutrophic lakes with respect to P, other than by decreasing P inputs, remains a challenge. The addition of iron (Fe) salts has been shown to be effective in removing dissolved phosphate from the water column of eutrophic lakes. However, the resulting changes in biogeochemical processes in sediments as well as the long-term effects of Fe additions on P dynamics in both sediments and the water column are not well understood.</p><p>In this study, we assess the impact of past Fe additions on the sediment P biogeochemistry of Lake Terra Nova, a well-mixed shallow peat lake in the Netherlands. The Fe-treatment in 2010 efficiently reduced P release from the sediments to the surface waters for 6 years. Since then, the internal sediment P source in the lake has been increasing again with a growing trend over the years.</p><p>In 2020, we sampled sediments at three locations in Terra Nova, of which one received two times more Fe during treatment than the other two. Sediment cores from all sites were sectioned under oxygen-free conditions. Both the porewaters and sediments were analysed for their chemical composition, with sequential extractions providing insight into the sediment forms of P and Fe. Additional sediment cores were incubated under oxic and anoxic conditions and the respective fluxes of P and Fe across the sediment water interface were measured.</p><p>The results suggest that Fe and P dynamics in the lake sediments are strongly coupled. We also find that the P dynamics are sensitive to the amount of Fe supplied, even though enhanced burial of P in the sediment was not detected. The results of the sequential extraction procedure for P, which distinguishes P associated with humic acids and Fe oxides, as well as reduced flux of Fe(II) across the sediment water interface in the anoxic incubations, suggest a major role of organic matter in the interaction of Fe and P in these sediments.</p><p>Further research will include investigations of the role of organic matter and sulphur in determining the success of Fe-treatment in sequestering P in lake sediments. Based on these data in combination with reactive transport modelling we aim to constrain conditions for successful lake restoration through Fe addition.</p>


2014 ◽  
Vol 11 (11) ◽  
pp. 2977-2990 ◽  
Author(s):  
E. Bayraktarov ◽  
C. Wild

Abstract. Sediments are fundamental for the function of oligotrophic coral reef ecosystems because they are major places for organic matter recycling. The Tayrona National Natural Park (TNNP, Colombian Caribbean) is located between the population center Santa Marta (>455 000 inhabitants) in the southwest and several river mouths in the east. Here, coral reef sediments experience pronounced changes in environmental conditions due to seasonal coastal upwelling, but knowledge of relevant spatiotemporal effects on organic matter supply to the sediments and recycling processes is not available. Therefore, sediment traps were deployed monthly over 14 months complemented by assessment of sedimentary properties (e.g., porosity, grain size, content of particulate organic matter and pigments) and sedimentary O2 demand (SOD) at water-current-exposed and sheltered sites along distance gradients (12–20 km) to Santa Marta and the eastern river mouths (17–27 km). Findings revealed that seasonal upwelling delivered strong (75–79% of annual supply) pulses of labile organic matter mainly composed of fresh phytoplankton detritus (C : N ratio 6–8) to the seafloor. Sedimentary chlorophyll a contents and SOD increased significantly with decreasing distance to the eastern rivers, but only during upwelling. This suggests sedimentary organic matter supply controlled by nutrient-enriched upwelling waters and riverine runoff rather than by the countercurrent-located city of Santa Marta. Organic matter pulses led to significantly higher SOD (more than 30%) at the water-current-sheltered sites as compared to the exposed sites, ensuing a rapid recycling of the supplied labile organic matter in the permeable silicate reef sands.


2016 ◽  
Vol 75 (s1) ◽  
Author(s):  
Jordi Catalan ◽  
John C. Donato Rondón

<p>High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals). The consequence is a water column structure based on temperature, in temperate lakes, and oxygen, in tropical lakes. This essential difference implies that, in tropical lakes, one can expect a more sustained productivity throughout the year; a higher nutrient internal loading based on the mineralization of external organic matter; higher nitrification-denitrification potential related to the oxyclines; and a higher metal mobilization due to the permanently reduced bottom layer. Quantifying and linking these and other biogeochemical pathways to particular groups of organisms is in the current agenda of high-mountain limnology. The intrinsic difficulties of the taxonomic study of many of the organisms inhabiting these systems can be now overcome with the use of molecular techniques. These techniques will not only provide a much less ambiguous taxonomic knowledge of the microscopic world, but also will unveil new biogeochemical pathways that are difficult to measure chemically and will solve biogeographical puzzles of the distribution of some macroscopic organism, tracing the relationship with other areas. Daily variability and vertical gradients in the tropics are the main factors of phytoplankton species turnover in tropical lakes; whereas seasonality is the main driver in temperate communities. The study of phytoplankton in high-mountain lakes only makes sense in an integrated view of the microscopic ecosystem. A large part of the plankton biomass is in heterotrophic, and mixotrophic organisms and prokaryotes compete for dissolved resources with eukaryotic autotrophs. In fact, high-mountain lake systems are excellent model ecosystems for applying an investigation linking airshed to sediments functional views. Additionally, the study of the mountain lakes districts as functional metacommunity units may reveal key differences in the distribution of organisms of limited (slow) dispersal. We propose that limnological studies at tropical and temperate high mountain lakes should adhere to a common general paradigm. In which biogeochemical processes are framed by the airshed-to-sediment continuum concept and the biogeographical processes in the functional lake district concept. The solid understanding of the fundamental limnological processes will facilitate stronger contributions to the assessment of the impacts of the on-going global change in remote areas.</p>


Geoderma ◽  
1994 ◽  
Vol 61 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
M. Simón ◽  
I. García ◽  
C. Gil ◽  
A. Polo

The Holocene ◽  
2016 ◽  
Vol 27 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Stephen A Wolfe ◽  
Olav B Lian ◽  
Christopher H Hugenholtz ◽  
Justine R Riches

The Bigstick and Seward Sand Hills are possibly two of the oldest dune fields within the late Wisconsin glaciated regions of the Northern Great Plains. As with most Northern Great Plains dune fields, source sediments are former proglacial outwash sands. Thus, Holocene dune construction is primarily related to spatial–temporal variations in surface cover and transport capacity, rather than renewed sediment input. However, eolian landscape reconstructions on the Northern Great Plains have been temporally constrained to recent periods of activity, as older episodes of deposition are typically reworked by younger events. In this study, sediment cores from shallow lacustrine basins and interdune areas provide an improved record of Holocene eolian sand deposition. Eolian sand accumulation in the interdunes and basins occurred between 150 and 270 years ago, 1.9 and 3.0 ka, 5.4 and 8.6 ka, and prior to ca. 10.8 ka. These episodes of sand accumulation were bracketed by lacustrine deposition and soil formation, which represented wetter conditions. Other than mid-Holocene dune activity, which may be related to peak warmth and aridity, most periods of eolian sand accumulation coincided with cooler but drier climatic events such as the Younger Dryas, late-Holocene cooling prior to the Medieval Climatic Anomaly, and the ‘Little Ice Age’. These depositional episodes are also spatially represented by other dune fields in the region, providing a broad-scale view of the connections between past climatic events and eolian landscape evolution on the Northern Great Plains.


2013 ◽  
Vol 10 (11) ◽  
pp. 7689-7702 ◽  
Author(s):  
B. Gaye ◽  
B. Nagel ◽  
K. Dähnke ◽  
T. Rixen ◽  
N. Lahajnar ◽  
...  

Abstract. Sedimentation in the ocean is fed by large aggregates produced in the surface mixed layer that sink rapidly through the water column. These particles sampled by sediment traps have often been proposed to interact by disaggregation and scavenging with a pool of fine suspended matter with very slow sinking velocities and thus a long residence time. We investigated the amino acid (AA) composition and stable nitrogen isotopic ratios of suspended matter (SPM) sampled during the late SW monsoon season in the Arabian Sea and compared them to those of sinking particles to understand organic matter degradation/modification during passage through the water column. We found that AA composition of mixed layer suspended matter corresponds more to fresh plankton and their aggregates, whereas AA composition of SPM in the sub-thermocline water column deviated progressively from mixed layer composition. We conclude that suspended matter in deep waters and in the mixed layers of oligotrophic stations is dominated by fine material that has a long residence time and organic matter that is resistant to degradation. SPM in areas of high primary productivity is essentially derived from fresh plankton and thus has a strong imprint of the subsurface nitrate source, whereas SPM at oligotrophic stations and at subthermocline depths appears to exchange amino acids and nitrogen isotopes with the dissolved organic carbon (DOC) pool influencing also the δ15N values.


Sign in / Sign up

Export Citation Format

Share Document