Transient methane emissions in the Permian Basin

Author(s):  
Daniel Cusworth ◽  
Riley Duren ◽  
Andrew Thorpe ◽  
Philip Dennison ◽  
Nicole Downey ◽  
...  

<p>The Permian Basin is the largest and fastest growing oil and gas (O&G) producing region in the United States. Methane (CH4), a powerful greenhouse gas, is emitted from both routine and abnormal or avoidable operating conditions in the Permian Basin, including O&G production, distribution, and processing. The time scales over which these emissions persist is uncertain, and this uncertainty can lead to large discrepancies in bottom-up emission accounting. Here, we conducted an extensive airborne campaign across the majority (55,000 km<sup>2</sup>) of the Permian Basin with imaging spectrometers to quantify individual CH4 point sources at the facility scale. We revisited each source multiple times and found that CH4 sources exhibited 26% persistence on average. Persistence-averaged CH4 emissions follow a heavy-tailed distribution, with 20% of facilities constituting 60% of the total point source budget. We quantified the total CH4 flux in the region (point + area sources) through an inverse analysis with satellite observations, and find that point sources make up 50% of the regional CH4 budget. Sector attribution of plumes shows that 50% of detected emissions result from O&G production, 38% from gathering, and 12% from processing plants. Imaging spectroscopy allows for identification of flares, and we find that 12% of CH4 plume emissions were associated with either active or inactive flares, and often emitting above 1000 kg CH4 h<sup>-1</sup>, even under active flaring. These results show that regular plume-scale monitoring in heterogeneous O&G basins is necessary to understand the high intermittency of operations and resulting emissions.</p>

2021 ◽  
Author(s):  
Itziar Irakulis-Loitxate ◽  
Luis Guanter ◽  
Yin-Nian Liu ◽  
Daniel J. Varon ◽  
Joannes D. Maasakkers ◽  
...  

<p>The Permian Basin is known for its extensive oil and gas production, which has increased rapidly in recent years becoming the largest producing basin in the United States. It is also responsible for almost half of the methane emissions from all oil and gas producing regions in the country. Given the urgent need to reduce greenhouse gas emissions, it is crucial to identify and characterize the point sources of emissions. To this end, we have combined three new high-resolution hyperspectral sensors data onboard the GF-5, ZY1 and PRIMA satellites to create the first regional study to identify methane sources and measure the emitted quantities from each source. With data collected over several days in 2019 and 2020, we have identified a total of 37 point source emissions with flux rates >500kg/h, that is, a high concentration of extreme emission point sources that account for nearly 40% of the Permian annual emissions. Also, we have found that new infrastructure (post-2018) is responsible for almost 60% of the detected emissions, in many cases (21% of the cases) due to inefficient use of flaring of the gas that they cannot store. With this study, we demonstrate that hyperspectral satellite data are a powerful tool for the detection and quantification of strong methane point emissions.</p>


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Evan D. Sherwin ◽  
Yuanlei Chen ◽  
Arvind P. Ravikumar ◽  
Adam R. Brandt

Methane leakage from point sources in the oil and gas industry is a major contributor to global greenhouse gas emissions. The majority of such emissions come from a small fraction of “super-emitting” sources. We evaluate the emission detection and quantification capabilities of Kairos Aerospace’s airplane-based hyperspectral imaging methane emission detection system for methane fluxes of 18–1,025 kg per hour of methane (kgh(CH4)). In blinded controlled releases of methane conducted over 4 days in San Joaquin County, CA, Kairos detected 182 of 200 valid nonzero releases, including all 173 over 15 kgh(CH4) per meter per second (mps) of wind and none of the 12 nonzero releases below 8.3 kgh(CH4)/mps. Nine of the 26 releases in the partial detection range of 5–15 kgh(CH4)/mps were detected. There were no false positives: Kairos did not detect methane during any of the 21 negative controls. Plume quantification accuracy depends on the wind measurement technique, with a parity slope of 1.15 (σ = 0.037, R2 = 0.84, N = 185) using a cup-based wind meter and 1.45 (σ = 0.059, R2 = 0.80, N = 157) using an ultrasonic anemometer. Performance is comparable even with only modeled wind data. For emissions above 15 kgh/mps, quantification error scales as roughly 30%–40% of emission size, even when using wind reanalysis data instead of ground-based measurements. This reflects both uncertainty in wind measurements and in Kairos’ estimates. These findings suggest that at 2 mps winds under favorable environmental conditions in the United States, Kairos could detect and quantify over 50% of total emissions by identifying super-emitting sources.


2017 ◽  
Author(s):  
Abigail Koss ◽  
Bin Yuan ◽  
Carsten Warneke ◽  
Jessica B. Gilman ◽  
Brian M. Lerner ◽  
...  

Abstract. VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS / PTR-ToF-MS) from aircraft during the SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil and gas producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates, and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.


2017 ◽  
Vol 10 (8) ◽  
pp. 2941-2968 ◽  
Author(s):  
Abigail Koss ◽  
Bin Yuan ◽  
Carsten Warneke ◽  
Jessica B. Gilman ◽  
Brian M. Lerner ◽  
...  

Abstract. VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf4507
Author(s):  
Itziar Irakulis-Loitxate ◽  
Luis Guanter ◽  
Yin-Nian Liu ◽  
Daniel J. Varon ◽  
Joannes D. Maasakkers ◽  
...  

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour−1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Sarmistha R. Majumdar

Fracking has helped to usher in an era of energy abundance in the United States. This advanced drilling procedure has helped the nation to attain the status of the largest producer of crude oil and natural gas in the world, but some of its negative externalities, such as human-induced seismicity, can no longer be ignored. The occurrence of earthquakes in communities located at proximity to disposal wells with no prior history of seismicity has shocked residents and have caused damages to properties. It has evoked individuals’ resentment against the practice of injection of fracking’s wastewater under pressure into underground disposal wells. Though the oil and gas companies have denied the existence of a link between such a practice and earthquakes and the local and state governments have delayed their responses to the unforeseen seismic events, the issue has gained in prominence among researchers, affected community residents, and the media. This case study has offered a glimpse into the varied responses of stakeholders to human-induced seismicity in a small city in the state of Texas. It is evident from this case study that although individuals’ complaints and protests from a small community may not be successful in bringing about statewide changes in regulatory policies on disposal of fracking’s wastewater, they can add to the public pressure on the state government to do something to address the problem in a state that supports fracking.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

This case study analyzes the potential impacts of weakening the National Park Service’s (NPS) “9B Regulations” enacted in 1978, which established a federal regulatory framework governing hydrocarbon rights and extraction to protect natural resources within the parks. We focus on potential risks to national parklands resulting from Executive Orders 13771—Reducing Regulation and Controlling Regulatory Costs [1]—and 13783—Promoting Energy Independence and Economic Growth [2]—and subsequent recent revisions and further deregulation. To establish context, we briefly overview the history of the United States NPS and other relevant federal agencies’ roles and responsibilities in protecting federal lands that have been set aside due to their value as areas of natural beauty or historical or cultural significance [3]. We present a case study of Theodore Roosevelt National Park (TRNP) situated within the Bakken Shale Formation—a lucrative region of oil and gas deposits—to examine potential impacts if areas of TRNP, particularly areas designated as “wilderness,” are opened to resource extraction, or if the development in other areas of the Bakken near or adjacent to the park’s boundaries expands [4]. We have chosen TRNP because of its biodiversity and rich environmental resources and location in the hydrocarbon-rich Bakken Shale. We discuss where federal agencies’ responsibility for the protection of these lands for future generations and their responsibility for oversight of mineral and petroleum resources development by private contractors have the potential for conflict.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

High-volume hydraulic fracturing combined with horizontal drilling has “revolutionized” the United States’ oil and gas industry by allowing extraction of previously inaccessible oil and gas trapped in shale rock [1]. Although the United States has extracted shale gas in different states for several decades, the United Kingdom is in the early stages of developing its domestic shale gas resources, in the hopes of replicating the United States’ commercial success with the technologies [2, 3]. However, the extraction of shale gas using hydraulic fracturing and horizontal drilling poses potential risks to the environment and natural resources, human health, and communities and local livelihoods. Risks include contamination of water resources, air pollution, and induced seismic activity near shale gas operation sites. This paper examines the regulation of potential induced seismic activity in Oklahoma, USA, and Lancashire, UK, and concludes with recommendations for strengthening these protections.


Author(s):  
Richard Pomfret

This book analyzes the Central Asian economies of Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan, from their buffeting by the commodity boom of the early 2000s to its collapse in 2014. The book examines the countries' relations with external powers and the possibilities for development offered by infrastructure projects as well as rail links between China and Europe. The transition of these nations from centrally planned to market-based economic systems was essentially complete by the early 2000s, when the region experienced a massive increase in world prices for energy and mineral exports. This raised incomes in the main oil and gas exporters, Kazakhstan and Turkmenistan; brought more benefits to the most populous country, Uzbekistan; and left the poorest countries, the Kyrgyz Republic and Tajikistan, dependent on remittances from migrant workers in oil-rich Russia and Kazakhstan. The book considers the enhanced role of the Central Asian nations in the global economy and their varied ties to China, the European Union, Russia, and the United States. With improved infrastructure and connectivity between China and Europe (reflected in regular rail freight services since 2011 and China's announcement of its Belt and Road Initiative in 2013), relaxation of UN sanctions against Iran in 2016, and the change in Uzbekistan's presidency in late 2016, a window of opportunity appears to have opened for Central Asian countries to achieve more sustainable economic futures.


Sign in / Sign up

Export Citation Format

Share Document