Scattering of internal tide energy to super-tidal frequencies in global HYCOM 

Author(s):  
Miguel Solano ◽  
Maarten Buijsman

<p>Energy decay in realistically forced global ocean models has been mostly studied in the diurnal and semi-diurnal tidal bands and it is unclear how much of the tidal energy in these bands is scattered to higher frequencies. Global ocean models and satellite altimetry have shown that low-mode internal tides can propagate thousands of kilometers from their generation sites before being dissipated in the ocean interior but their pathway to dissipation is obscured due to lee-wave breaking at generation, wave-wave interactions, topographic scattering, shearing instabilities and shoaling on continental shelves. Internal tides from some generation sites, such as the Amazon shelf and the Nicobar and Andaman island chain, have large amounts of energy resulting in a steepening of the internal waves into solitary wave trains due to non-hydrostatic dispersion. In HYCOM, a hydrostatic model, this process is partially simulated by numerical dispersion. However, it is yet unknown how the dissipation of internal tides is affected by the numerical dispersion in hydrostatic models. In this study we use the method of vertical modes and rotary spectra to quantify the scattering of internal tides to higher-frequencies and analyze the dissipation processes in global HYCOM simulations with 4-km horizontal resolution.</p>

2020 ◽  
Author(s):  
Maarten Buijsman ◽  
Harpreet Kaur ◽  
Zhongxiang Zhao ◽  
Amy Waterhouse ◽  
Caitlin Whalen

<p>In this presentation we combine several model and observational data sets to better understand the dissipation of the diurnal and semidiurnal internal tide in the global ocean, which is relevant for maintaining the global overturning circulation. We compute depth-integrated internal tide dissipation rates from a realistically-forced global HYbrid Coordinate Ocean Model (HYCOM) simulation with a horizontal resolution of 4 km (1/25 degrees) and 41 layers. We also compute dissipation rates from altimetry in two ways: 1) from the low-mode flux divergence away from topography and 2) by fitting exponential decay curves along low-mode internal tide beams. The internal-tide sea-surface height amplitude is computed with a least-squares harmonic analysis over a 20+ year altimetry data set. Hence, the altimetry-inferred dissipation rates both reflect the tidal dissipation and the energy scattered from the stationary to the nonstationary internal tide. To account for the dissipation of the nonstationary tide, we apply a spatially-varying correction factor to the stationary dissipation inferred from altimetry.  This correction factor is computed from a global 8-km HYCOM simulation with a duration of 6 years, from which the stationary and nonstationary internal tides can be easily isolated. We compare the simulated and the corrected altimetry-inferred dissipation rates with dissipation rates from finescale and microstructure observations. Preliminary results show that the simulated dissipation is up to a factor of two larger than the depth-integrated dissipation rates inferred from finescale methods, but smaller than the dissipation rates from microstructure.</p>


2014 ◽  
Vol 44 (12) ◽  
pp. 3225-3244 ◽  
Author(s):  
Saeed Falahat ◽  
Jonas Nycander ◽  
Fabien Roquet ◽  
Moundheur Zarroug

Abstract A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.


2017 ◽  
Vol 47 (8) ◽  
pp. 2139-2154 ◽  
Author(s):  
R. C. Musgrave ◽  
J. A. MacKinnon ◽  
R. Pinkel ◽  
A. F. Waterhouse ◽  
J. Nash ◽  
...  

AbstractShipboard measurements of velocity and density were obtained in the vicinity of a small channel in the Mendocino Ridge, where flows were predominantly tidal. Measured daily inequalities in transport are much greater than those predicted by a barotropic tide model, with the strongest transport associated with full depth flows and the weakest with shallow, surface-confined flows. A regional numerical model of the area finds that the subinertial K1 (diurnal) tidal constituent generates topographically trapped waves that propagate anticyclonically around the ridge and are associated with enhanced near-topographic K1 transports. The interaction of the baroclinic trapped waves with the surface tide produces a tidal flow whose northward transports alternate between being surface confined and full depth. Full depth flows are associated with the generation of a large-amplitude tidal lee wave on the northward face of the ridge, while surface-confined flows are largely nonturbulent. The regional model demonstrates that, consistent with field observations, near-topographic dissipation over the entire ridge is diurnally modulated, despite the semidiurnal tidal constituent having larger barotropic velocities. It is concluded that at this location it is the bottom-trapped subinertial internal tide that governs near-topographic dissipation and mixing. The effect of the trapped wave on regional energetics is to increase the fraction of converted barotropic–baroclinic tidal energy that dissipates locally.


2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


2021 ◽  
Author(s):  
Ryan Holmes ◽  
Jan Zika ◽  
Stephen Griffies ◽  
Andrew Hogg ◽  
Andrew Kiss ◽  
...  

<p>Numerical mixing, the physically spurious diffusion of tracers due to the numerical discretization of advection, is known to contribute to biases in ocean circulation models. However, quantifying numerical mixing is non-trivial, with most studies utilizing specifically targeted experiments in idealized settings. Here, we present a precise method based on water-mass transformation for quantifying numerical mixing, including its spatial structure, that can be applied to any conserved variable in global general circulation ocean models. The method is applied to a suite of global MOM5 ocean-sea ice model simulations with differing grid spacings and sub-grid scale parameterizations. In all configurations numerical mixing drives across-isotherm heat transport of comparable magnitude to that associated with explicitly-parameterized mixing. Numerical mixing is prominent at warm temperatures in the tropical thermocline, where it is sensitive to the vertical diffusivity and resolution. At colder temperatures, numerical mixing is sensitive to the presence of explicit neutral diffusion, suggesting that much of the numerical mixing in these regions acts as a proxy for neutral diffusion when it is explicitly absent. Comparison of equivalent (with respect to vertical resolution and explicit mixing parameters) 1/4-degree and 1/10-degree horizontal resolution configurations shows only a modest enhancement in numerical mixing at the eddy-permitting 1/4-degree resolution. Our results provide a detailed view of numerical mixing in ocean models and pave the way for future improvements in numerical methods.</p>


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2003 ◽  
Vol 15 (1) ◽  
pp. 41-46 ◽  
Author(s):  
ROBIN ROBERTSON ◽  
AIKE BECKMANN ◽  
HARTMUT HELLMER

In certain regions of the Southern Ocean, tidal energy is believed to foster the mixing of different water masses, which eventually contribute to the formation of deep and bottom waters. The Ross Sea is one of the major ventilation sites of the global ocean abyss and a region of sparse tidal observations. We investigated M2 tidal dynamics in the Ross Sea using a three-dimensional sigma coordinate model, the Regional Ocean Model System (ROMS). Realistic topography and hydrography from existing observational data were used with a single tidal constituent, the semi-diurnal M2. The model fields faithfully reproduced the major features of the tidal circulation and had reasonable agreement with ten existing tidal elevation observations and forty-two existing tidal current measurements. The differences were attributed primarily to topographic errors. Internal tides were generated at the continental shelf/slope break and other areas of steep topography. Strong vertical shears in the horizontal velocities occurred under and at the edges of the Ross Ice Shelf and along the continental shelf/slope break. Estimates of lead formation based on divergence of baroclinic velocities were significantly higher than those based on barotrophic velocities, reaching over 10% at the continental shelf/slope break.


2020 ◽  
Vol 50 (11) ◽  
pp. 3165-3188
Author(s):  
Pengyang Song ◽  
Xueen Chen

AbstractA global ocean circulation and tide model with nonuniform resolution is used in this work to resolve the ocean circulation globally as well as mesoscale eddies and internal tides regionally. Focusing on the northwest Pacific Ocean (NWP, 0°–35°N, 105°–150°E), a realistic experiment is conducted to simulate internal tides considering the background circulation and stratification. To investigate the influence of a background field on the generation and propagation of internal tides, idealized cases with horizontally homogeneous stratification and zero surface fluxes are also implemented for comparison. By comparing the realistic cases with idealized ones, the astronomical tidal forcing is found to be the dominant factor influencing the internal tide conversion rate magnitude, whereas the stratification acts as a secondary factor. However, stratification deviations in different areas can lead to an error exceeding 30% in the local internal tide energy conversion rate, indicating the necessity of a realistic stratification setting for simulating the entire NWP. The background shear is found to refract propagating diurnal internal tides by changing the effective Coriolis frequencies and phase speeds, while the Doppler-shifting effect is remarkable for introducing biases to semidiurnal results. In addition, nonlinear baroclinic tide energy equations considering the background circulation and stratification are derived and diagnosed in this work. The mean flow–baroclinic tide interaction and nonlinear energy flux are the most significant nonlinear terms in the derived equations, and nonlinearity is estimated to contribute approximately 5% of the total internal tide energy in the greater Luzon Strait area.


2020 ◽  
Author(s):  
Casimir de Lavergne ◽  
Clément Vic ◽  
Gurvan Madec ◽  
Fabien Roquet ◽  
Amy Waterhouse ◽  
...  

<p>Vertical mixing is often regarded as the Achilles’ heel of ocean models. In particular, few models include a comprehensive and energy-constrained parameterization of mixing by internal ocean tides. Here, we present an energy-conserving mixing scheme which accounts for the local breaking of high-mode internal tides and the distant dissipation of low-mode internal tides. The scheme relies on four static two-dimensional maps of internal tide dissipation, constructed using mode-by-mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three-dimensional map of dissipation which compares well with available microstructure observations and with upper-ocean finestructure mixing estimates. Implemented in the NEMO global ocean model, the scheme improves the representation of deep water-mass transformation and obviates the need for a constant background diffusivity.</p>


2009 ◽  
Vol 39 (10) ◽  
pp. 2635-2651 ◽  
Author(s):  
N. V. Zilberman ◽  
J. M. Becker ◽  
M. A. Merrifield ◽  
G. S. Carter

Abstract The conversion of barotropic to baroclinic M2 tidal energy is examined for a section of the Mid-Atlantic Ridge in the Brazil Basin using a primitive equation model. Model runs are made with different horizontal smoothing (1.5, 6, and 15 km) applied to a 192 km × 183 km section of multibeam bathymetry to characterize the influence of topographic resolution on the model conversion rates. In all model simulations, barotropic to baroclinic conversion is highest over near- and supercritical slopes on the flanks of abyssal hills and discordant zones. From these generation sites, internal tides propagate upward and downward as tidal beams. The most energetic internal tide mode generated is mode 2, consistent with the dominant length scales of the topographic slope spectrum (50 km). The topographic smoothing significantly affects the model conversion amplitudes, with the domain-averaged conversion rate from the 1.5-km run (15.1 mW m−2) 4% and 19% higher than for the 6-km (14.5 mW m−2) and 15-km runs (12.2 mW m−2), respectively. Analytical models for internal tide generation by subcritical topography predict conversion rates with modal dependence and spatial patterns qualitatively similar to the Princeton Ocean Model (POM) and also show a decrease in conversion with smoother topography. The POM conversion rates are approximately 20% higher than the analytical estimates for all model grids, which is attributed to spatial variations in the barotropic flow and near-bottom stratification over generation sites, which are incorporated in the model but not in the analytical estimates.


Sign in / Sign up

Export Citation Format

Share Document