The dissipation of the internal tide inferred from a global ocean model, altimetry, and in-situ observations

Author(s):  
Maarten Buijsman ◽  
Harpreet Kaur ◽  
Zhongxiang Zhao ◽  
Amy Waterhouse ◽  
Caitlin Whalen

<p>In this presentation we combine several model and observational data sets to better understand the dissipation of the diurnal and semidiurnal internal tide in the global ocean, which is relevant for maintaining the global overturning circulation. We compute depth-integrated internal tide dissipation rates from a realistically-forced global HYbrid Coordinate Ocean Model (HYCOM) simulation with a horizontal resolution of 4 km (1/25 degrees) and 41 layers. We also compute dissipation rates from altimetry in two ways: 1) from the low-mode flux divergence away from topography and 2) by fitting exponential decay curves along low-mode internal tide beams. The internal-tide sea-surface height amplitude is computed with a least-squares harmonic analysis over a 20+ year altimetry data set. Hence, the altimetry-inferred dissipation rates both reflect the tidal dissipation and the energy scattered from the stationary to the nonstationary internal tide. To account for the dissipation of the nonstationary tide, we apply a spatially-varying correction factor to the stationary dissipation inferred from altimetry.  This correction factor is computed from a global 8-km HYCOM simulation with a duration of 6 years, from which the stationary and nonstationary internal tides can be easily isolated. We compare the simulated and the corrected altimetry-inferred dissipation rates with dissipation rates from finescale and microstructure observations. Preliminary results show that the simulated dissipation is up to a factor of two larger than the depth-integrated dissipation rates inferred from finescale methods, but smaller than the dissipation rates from microstructure.</p>

2020 ◽  
Author(s):  
Casimir de Lavergne ◽  
Clément Vic ◽  
Gurvan Madec ◽  
Fabien Roquet ◽  
Amy Waterhouse ◽  
...  

<p>Vertical mixing is often regarded as the Achilles’ heel of ocean models. In particular, few models include a comprehensive and energy-constrained parameterization of mixing by internal ocean tides. Here, we present an energy-conserving mixing scheme which accounts for the local breaking of high-mode internal tides and the distant dissipation of low-mode internal tides. The scheme relies on four static two-dimensional maps of internal tide dissipation, constructed using mode-by-mode Lagrangian tracking of energy beams from sources to sinks. Each map is associated with a distinct dissipative process and a corresponding vertical structure. Applied to an observational climatology of stratification, the scheme produces a global three-dimensional map of dissipation which compares well with available microstructure observations and with upper-ocean finestructure mixing estimates. Implemented in the NEMO global ocean model, the scheme improves the representation of deep water-mass transformation and obviates the need for a constant background diffusivity.</p>


2021 ◽  
Author(s):  
Miguel Solano ◽  
Maarten Buijsman

<p>Energy decay in realistically forced global ocean models has been mostly studied in the diurnal and semi-diurnal tidal bands and it is unclear how much of the tidal energy in these bands is scattered to higher frequencies. Global ocean models and satellite altimetry have shown that low-mode internal tides can propagate thousands of kilometers from their generation sites before being dissipated in the ocean interior but their pathway to dissipation is obscured due to lee-wave breaking at generation, wave-wave interactions, topographic scattering, shearing instabilities and shoaling on continental shelves. Internal tides from some generation sites, such as the Amazon shelf and the Nicobar and Andaman island chain, have large amounts of energy resulting in a steepening of the internal waves into solitary wave trains due to non-hydrostatic dispersion. In HYCOM, a hydrostatic model, this process is partially simulated by numerical dispersion. However, it is yet unknown how the dissipation of internal tides is affected by the numerical dispersion in hydrostatic models. In this study we use the method of vertical modes and rotary spectra to quantify the scattering of internal tides to higher-frequencies and analyze the dissipation processes in global HYCOM simulations with 4-km horizontal resolution.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Fan Lin ◽  
Lars Asplin ◽  
Hao Wei

The summertime M2 internal tide in the northern Yellow Sea is investigated with moored current meter observations and numerical current model results. The hydrodynamic model, which is implemented from the Regional Ocean Model System (ROMS) with 1 km horizontal resolution, is capable of resolving the internal tidal dynamics and the results are validated in a comparison with observations. The vertical pattern of a mode-1, semi-diurnal internal tide is clearly captured by the moored ADCP as well as in the simulation results. Spectral analysis of the current results shows that the M2 internal tide is dominant in the northern Yellow Sea. Analysis of the major M2 internal tide energetics demonstrated a complex spatial pattern. The tidal mixing front along the Korean coast and on the northern shelf provided proper conditions for the generation and propagation of the internal tides. Near the Changshan islands, the M2 internal tide is mainly generated near the local topography anomalies with relatively strong current magnitude, equal to about 30% of the barotropic component, thus modifying the local current field. These local internal tides are short-lived phenomena rapidly being dissipated along the propagation pathway, restricting their influence within a few kilometers around the islands.


2003 ◽  
Vol 15 (1) ◽  
pp. 41-46 ◽  
Author(s):  
ROBIN ROBERTSON ◽  
AIKE BECKMANN ◽  
HARTMUT HELLMER

In certain regions of the Southern Ocean, tidal energy is believed to foster the mixing of different water masses, which eventually contribute to the formation of deep and bottom waters. The Ross Sea is one of the major ventilation sites of the global ocean abyss and a region of sparse tidal observations. We investigated M2 tidal dynamics in the Ross Sea using a three-dimensional sigma coordinate model, the Regional Ocean Model System (ROMS). Realistic topography and hydrography from existing observational data were used with a single tidal constituent, the semi-diurnal M2. The model fields faithfully reproduced the major features of the tidal circulation and had reasonable agreement with ten existing tidal elevation observations and forty-two existing tidal current measurements. The differences were attributed primarily to topographic errors. Internal tides were generated at the continental shelf/slope break and other areas of steep topography. Strong vertical shears in the horizontal velocities occurred under and at the edges of the Ross Ice Shelf and along the continental shelf/slope break. Estimates of lead formation based on divergence of baroclinic velocities were significantly higher than those based on barotrophic velocities, reaching over 10% at the continental shelf/slope break.


2020 ◽  
Vol 50 (11) ◽  
pp. 3165-3188
Author(s):  
Pengyang Song ◽  
Xueen Chen

AbstractA global ocean circulation and tide model with nonuniform resolution is used in this work to resolve the ocean circulation globally as well as mesoscale eddies and internal tides regionally. Focusing on the northwest Pacific Ocean (NWP, 0°–35°N, 105°–150°E), a realistic experiment is conducted to simulate internal tides considering the background circulation and stratification. To investigate the influence of a background field on the generation and propagation of internal tides, idealized cases with horizontally homogeneous stratification and zero surface fluxes are also implemented for comparison. By comparing the realistic cases with idealized ones, the astronomical tidal forcing is found to be the dominant factor influencing the internal tide conversion rate magnitude, whereas the stratification acts as a secondary factor. However, stratification deviations in different areas can lead to an error exceeding 30% in the local internal tide energy conversion rate, indicating the necessity of a realistic stratification setting for simulating the entire NWP. The background shear is found to refract propagating diurnal internal tides by changing the effective Coriolis frequencies and phase speeds, while the Doppler-shifting effect is remarkable for introducing biases to semidiurnal results. In addition, nonlinear baroclinic tide energy equations considering the background circulation and stratification are derived and diagnosed in this work. The mean flow–baroclinic tide interaction and nonlinear energy flux are the most significant nonlinear terms in the derived equations, and nonlinearity is estimated to contribute approximately 5% of the total internal tide energy in the greater Luzon Strait area.


Ocean Science ◽  
2016 ◽  
Vol 12 (5) ◽  
pp. 1067-1090 ◽  
Author(s):  
Marie-Isabelle Pujol ◽  
Yannice Faugère ◽  
Guillaume Taburet ◽  
Stéphanie Dupuy ◽  
Camille Pelloquin ◽  
...  

Abstract. The new DUACS DT2014 reprocessed products have been available since April 2014. Numerous innovative changes have been introduced at each step of an extensively revised data processing protocol. The use of a new 20-year altimeter reference period in place of the previous 7-year reference significantly changes the sea level anomaly (SLA) patterns and thus has a strong user impact. The use of up-to-date altimeter standards and geophysical corrections, reduced smoothing of the along-track data, and refined mapping parameters, including spatial and temporal correlation-scale refinement and measurement errors, all contribute to an improved high-quality DT2014 SLA data set. Although all of the DUACS products have been upgraded, this paper focuses on the enhancements to the gridded SLA products over the global ocean. As part of this exercise, 21 years of data have been homogenized, allowing us to retrieve accurate large-scale climate signals such as global and regional MSL trends, interannual signals, and better refined mesoscale features.An extensive assessment exercise has been carried out on this data set, which allows us to establish a consolidated error budget. The errors at mesoscale are about 1.4 cm2 in low-variability areas, increase to an average of 8.9 cm2 in coastal regions, and reach nearly 32.5 cm2 in high mesoscale activity areas. The DT2014 products, compared to the previous DT2010 version, retain signals for wavelengths lower than  ∼  250 km, inducing SLA variance and mean EKE increases of, respectively, +5.1 and +15 %. Comparisons with independent measurements highlight the improved mesoscale representation within this new data set. The error reduction at the mesoscale reaches nearly 10 % of the error observed with DT2010. DT2014 also presents an improved coastal signal with a nearly 2 to 4 % mean error reduction. High-latitude areas are also more accurately represented in DT2014, with an improved consistency between spatial coverage and sea ice edge position. An error budget is used to highlight the limitations of the new gridded products, with notable errors in areas with strong internal tides.


2017 ◽  
Vol 47 (6) ◽  
pp. 1325-1345 ◽  
Author(s):  
Eric Kunze

AbstractInternal-wave-driven dissipation rates ε and diapycnal diffusivities K are inferred globally using a finescale parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 ± 0.6 TW, consistent with internal wave power sources of 2.1 ± 0.7 TW from tides and wind. Vertically integrated dissipation rates vary by three to four orders of magnitude with elevated values over abrupt topography in the western Indian and Pacific as well as midocean slow spreading ridges, consistent with internal tide sources. But dependence on bottom forcing is much weaker than linear wave generation theory, pointing to horizontal dispersion by internal waves and relatively little local dissipation when forcing is strong. Stratified turbulent bottom boundary layer thickness variability is not consistent with OGCM parameterizations of tidal mixing. Average diffusivities K = (0.3–0.4) × 10−4 m2 s−1 depend only weakly on depth, indicating that ε = KN2/γ scales as N2 such that the bulk of the dissipation is in the pycnocline and less than 0.08-TW dissipation below 2000-m depth. Average diffusivities K approach 10−4 m2 s−1 in the bottom 500 meters above bottom (mab) in height above bottom coordinates with a 2000-m e-folding scale. Average dissipation rates ε are 10−9 W kg−1 within 500 mab then diminish to background deep values of 0.15 × 10−9 W kg−1 by 1000 mab. No incontrovertible support is found for high dissipation rates in Antarctic Circumpolar Currents or parametric subharmonic instability being a significant pathway to elevated dissipation rates for semidiurnal or diurnal internal tides equatorward of 28° and 14° latitudes, respectively, although elevated K is found about 30° latitude in the North and South Pacific.


2009 ◽  
Vol 39 (10) ◽  
pp. 2635-2651 ◽  
Author(s):  
N. V. Zilberman ◽  
J. M. Becker ◽  
M. A. Merrifield ◽  
G. S. Carter

Abstract The conversion of barotropic to baroclinic M2 tidal energy is examined for a section of the Mid-Atlantic Ridge in the Brazil Basin using a primitive equation model. Model runs are made with different horizontal smoothing (1.5, 6, and 15 km) applied to a 192 km × 183 km section of multibeam bathymetry to characterize the influence of topographic resolution on the model conversion rates. In all model simulations, barotropic to baroclinic conversion is highest over near- and supercritical slopes on the flanks of abyssal hills and discordant zones. From these generation sites, internal tides propagate upward and downward as tidal beams. The most energetic internal tide mode generated is mode 2, consistent with the dominant length scales of the topographic slope spectrum (50 km). The topographic smoothing significantly affects the model conversion amplitudes, with the domain-averaged conversion rate from the 1.5-km run (15.1 mW m−2) 4% and 19% higher than for the 6-km (14.5 mW m−2) and 15-km runs (12.2 mW m−2), respectively. Analytical models for internal tide generation by subcritical topography predict conversion rates with modal dependence and spatial patterns qualitatively similar to the Princeton Ocean Model (POM) and also show a decrease in conversion with smoother topography. The POM conversion rates are approximately 20% higher than the analytical estimates for all model grids, which is attributed to spatial variations in the barotropic flow and near-bottom stratification over generation sites, which are incorporated in the model but not in the analytical estimates.


2016 ◽  
Vol 46 (5) ◽  
pp. 1399-1419 ◽  
Author(s):  
Maarten C. Buijsman ◽  
Joseph K. Ansong ◽  
Brian K. Arbic ◽  
James G. Richman ◽  
Jay F. Shriver ◽  
...  

AbstractThe effects of a parameterized linear internal wave drag on the semidiurnal barotropic and baroclinic energetics of a realistically forced, three-dimensional global ocean model are analyzed. Although the main purpose of the parameterization is to improve the surface tides, it also influences the internal tides. The relatively coarse resolution of the model of ~8 km only permits the generation and propagation of the first three vertical modes. Hence, this wave drag parameterization represents the energy conversion to and the subsequent breaking of the unresolved high modes. The total tidal energy input and the spatial distribution of the barotropic energy loss agree with the Ocean Topography Experiment (TOPEX)/Poseidon (TPXO) tidal inversion model. The wave drag overestimates the high-mode conversion at ocean ridges as measured against regional high-resolution models. The wave drag also damps the low-mode internal tides as they propagate away from their generation sites. Hence, it can be considered a scattering parameterization, causing more than 50% of the deep-water dissipation of the internal tides. In the near field, most of the baroclinic dissipation is attributed to viscous and numerical dissipation. The far-field decay of the simulated internal tides is in agreement with satellite altimetry and falls within the broad range of Argo-inferred dissipation rates. In the simulation, about 12% of the semidiurnal internal tide energy generated in deep water reaches the continental margins.


Author(s):  
Takaya Uchida ◽  
Bruno Deremble ◽  
Stephane Popinet

Mesoscale eddies, the weather system of the oceans, although being on the scales of O(20-100km), have a disproportionate role in shaping the mean jets such as the separated Gulf Stream in the North Atlantic Ocean, which is on the scale of O(1000km) in the along-jet direction. With the increase in computational power, we are now able to partially resolve the eddies in basin-scale and global ocean simulations, a model resolution often referred to as mesoscale permitting. It is well known, however, that due to grid-scale numerical viscosity, mesoscale permitting simulations have less energetic eddies and consequently weaker eddy feedback onto the mean flow. In this study, we run a quasi-geostrophic model at mesoscale resolving resolution in a double gyre configuration and formulate a deterministic parametrization for the eddy rectification term of potential vorticity (PV), namely, the eddy PV flux divergence. We have moderate success in reproducing the spatial patterns and magnitude of eddy kinetic and potential energy diagnosed from the model. One novel point about our approach is that we account for non-local eddy feedbacks onto the mean flow by solving the eddy PV equation prognostically in addition to the mean flow. In return, we are able to parametrize the variability in total (mean+eddy) PV at each time step instead of solely the mean PV. A closure for the total PV is beneficial as we are able to account for both the mean state and extreme events.


Sign in / Sign up

Export Citation Format

Share Document