Understanding deformation behavior of lower crustal rocks from experimentally deformed metapelitic aggregate: an EBSD-based approach

Author(s):  
Dripta Dutta ◽  
Santanu Misra ◽  
David Mainprice

<p>Partial melting of metapelites at high-P and high-T conditions typical of lower crustal levels is a well-known phenomenon. Its role in strain localization ­– both at micro- and regional scale – and subsequent rheological weakening of rocks have been widely investigated. Previous researchers have also explored the influence of such melt networks on the variation of the dominant phases' active deformation processes – especially quartz – over the entire range of tectono-thermal evolution of the rock. However, mechanisms driving the deformation of the phases crystallized in-situ from the melt has so far been largely overlooked.</p><p>In this work, we focus on the deformation behavior of the in-situ crystallized phases with increasing shear strain. In that pursuit, we took a quartz-muscovite mixture (dry) that was initially cold pressed at 200 MPa, followed by hot pressing at 160 MPa and 580 °C to obtain an analogue of pelite. The cylindrical sample was then experimentally deformed in a Patterson-type apparatus under a finite shear strain (γ) of 15.0 at 750 °C, a confining pressure of 300 MPa, and constant shear strain rate ( 3 × 10<sup>-4</sup>s<sup>-1</sup>). Subsequently, a longitudinal axial section was cut and was examined using electron backscattered diffraction (EBSD).</p><p>The initial minerals, quartz (Qtz) and muscovite (Ms), underwent deformation and reacted to produce K-Feldspar (Kfs), Mullite (Mul), Cordierite (Crd), Ilmenite (Ilm), and Biotite (Bt). The Qtz grains show limited evidence of dynamic recrystallization. Ms, on the other hand, exhibit strong crystal preferred orientations (CPO). The J-Indices of both Qtz and Ms increase with shear strain (from the center to the edge of the cylinder). Among the reaction products, Kfs (maximum in volume) show weak CPO throughout, similar to Qtz. The maxima of [001] plot near parallel to the shear direction in the pole figures for all values of γ. The rest of the phases show strong CPOs. The J-Index of Crd and Mul increase with shear strain, whereas that of Ms and Kfs increase till γ = 7 and fall at higher strains. Neighbor-pair misorientation axes for Crd, Ilm, and Kfs, corresponding to the high-angle boundaries (HAGBs), are randomly oriented, implying ‘rigid grain rotation,’ which could also be responsible for the lower [001] pole figure intensities. Overall, with increasing shear strain, the number of HAGBs decreases. The corresponding misorientation axes exhibit stronger preferred alignment, probably signifying restricted rotation with progressive melt crystallization. Although the area-equivalent diameters for all the melt-crystallized phases are nearly close (RMS: 1.5 – 2 µm), the Kfs CPOs are considerably weaker than the rest. This possibly affirms the dominance of fluid/melt in triggering diffusion creep and grain boundary sliding over grain size.</p>

2021 ◽  
Author(s):  
Yong Park ◽  
Sejin Jung ◽  
Haemyeong Jung

<p>To understand the crystallographic preferred orientation (CPO) of glaucophane and epidote and deformation microstructures at the top of a subducting slab in a warm subduction zone, deformation experiments of epidote blueschist were conducted in simple shear by using a modified Griggs apparatus. Deformation experiments were performed under high pressure (0.9–1.5 GPa), temperature (400–500 °C), shear strain (γ) in the range of 0.4–4.5, and shear strain rate of 1.5×10<sup>-5</sup>–1.8×10<sup>-4</sup> s<sup>-1</sup>. After experiments, CPO of minerals were determined by electron back-scattered diffraction (EBSD) technique, and microstructures of deformed minerals were observed by transmission electron microscopy (TEM). At low shear strain (γ ≤ 1), the [001] axes of glaucophane were in subparallel alignment to shear direction, and the (010) poles were sub-normally aligned to the shear plane. At high shear strain (γ > 2), the [001] axes of glaucophane were in subparallel alignment to shear direction, and the [100] axes were sub-normally aligned to the shear plane. At a shear strain between 2 < γ < 4, the (010) poles of epidote were in subparallel alignment to shear direction, and the [100] axes were sub-normally aligned to the shear plane. At a high shear strain where γ > 4, the alignment of the (010) epidote poles had altered from subparallel to subnormal to the shear plane, while the [001] axes were in subparallel alignment to the shear direction. TEM observations and EBSD mapping revealed that the CPO of glaucophane was developed by dislocation creep, somewhat affected by the cataclastic flow at high shear strain. On the other hand, the CPO development of epidote is considered to have been affected by dislocation creep under a shear strain of 2 < γ < 4 but is highly affected by cataclastic flow with rigid body rotation under a high shear strain (γ > 4). Our experimental results indicate that the magnitude of shear strain and rheological contrast between component minerals plays an important role on the formation of CPOs of glaucophane and epidote.</p>


2020 ◽  
Author(s):  
Congyan Zhang ◽  
Binbin Yue ◽  
Uttam Bhandari ◽  
Oleg Starovoytov ◽  
Yan Yang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 814
Author(s):  
Yaping Bai ◽  
Meng Li ◽  
Chao Cheng ◽  
Jianping Li ◽  
Yongchun Guo ◽  
...  

In this study, Fe-25Mn-xAl-8Ni-C alloys (x = 10 wt.%, 11 wt.%, 12 wt.%, 13 wt.%) were prepared by a vacuum arc melting method, and the microstructure of this series of alloys and the in situ tensile deformation behavior were studied. The results showed that Fe-25Mn-xAl-8Ni-C alloys mainly contained austenite phase with a small amount of NiAl compound. With the content of Al increasing, the amount of austenite decreased while the amount of NiAl compound increased. When the Al content increased to 12 wt.%, the interface between austenite and NiAl compound and austenitic internal started to precipitate k-carbide phase. In situ tensile results also showed that as the content of Al increased, the alloy elongation decreased gradually, and the tensile strength first increased and then decreased. When the Al content was up to 11 wt.%, the elongation and tensile strength were 2.6% and 702.5 MPa, respectively; the results of in situ tensile dynamic observations show that during the process of stretching, austenite deformed first, and crack initiation mainly occurred at the interface between austenite and NiAl compound, and propagated along the interface, resulting in fracture of the alloy.


2009 ◽  
Vol 1239 ◽  
Author(s):  
Yong Sun ◽  
Zaiwang Huang ◽  
Xiaodong Li

AbstractA facile electrophoretic deposition method was successfully applied to achieve novel nanoclay-reinforced polyacrylamide nanocomposite thin films. A special curled architecture of the re-aggregated nanoclay-platelets was identified, providing a possible source for realizing the interlocking mechanism in the nanocomposites. The curled architecture could be the result from strain releasing when the thin films were peeled off from the substrates. Through micro-/nano-indentation and in situ observation of the deformation during tensile test with an atomic force microscope (AFM), the localized deformation mechanism of the synthesized materials was investigated in further details. The results implied that a localized crack diversion mechanism worked in the synthesized nanocomposite thin films, which resembled its nature counterpart-nacre. The deformation behavior and fracture mechanism were discussed with reference to lamellar structure, interfacial strength between the nanoclays and the polyacrylamide matrix, and nanoclay agglomeration.


Sign in / Sign up

Export Citation Format

Share Document