scholarly journals Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance

2015 ◽  
Vol 19 (1) ◽  
pp. 209-223 ◽  
Author(s):  
A. J. Newman ◽  
M. P. Clark ◽  
K. Sampson ◽  
A. Wood ◽  
L. E. Hay ◽  
...  

Abstract. We present a community data set of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Area-averaged forcing data for the period 1980–2010 was generated for three basin spatial configurations – basin mean, hydrologic response units (HRUs) and elevation bands – by mapping daily, gridded meteorological data sets to the subbasin (Daymet) and basin polygons (Daymet, Maurer and NLDAS). Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this paper is to (1) present the data set for community use and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting Model, calibrated using the shuffled complex evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash–Sutcliffe efficiency scores ≥0.55 for the calibration period and 34% ≥ 0.8. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow and, for a given aridity, fewer extreme error days are present as the basin snow water equivalent increases.

2014 ◽  
Vol 11 (5) ◽  
pp. 5599-5631
Author(s):  
A. J. Newman ◽  
M. P. Clark ◽  
K. Sampson ◽  
A. Wood ◽  
L. E. Hay ◽  
...  

Abstract. We present a community dataset of daily forcing and hydrologic response data for 671 small- to medium-sized basins across the contiguous United States (median basin size of 336 km2) that spans a very wide range of hydroclimatic conditions. Areally averaged forcing data for the period 1980–2010 was generated for three basin delineations – basin mean, Hydrologic Response Units (HRUs) and elevation bands – by mapping the daily, 1 km gridded Daymet meteorological dataset to the sub-basin and basin polygons. Daily streamflow data was compiled from the United States Geological Survey National Water Information System. The focus of this paper is to (1) present the dataset for community use; and (2) provide a model performance benchmark using the coupled Snow-17 snow model and the Sacramento Soil Moisture Accounting conceptual hydrologic model, calibrated using the Shuffled Complex Evolution global optimization routine. After optimization minimizing daily root mean squared error, 90% of the basins have Nash–Sutcliffe Efficiency scores > 0.55 for the calibration period. This benchmark provides a reference level of hydrologic model performance for a commonly used model and calibration system, and highlights some regional variations in model performance. For example, basins with a more pronounced seasonal cycle generally have a negative low flow bias, while basins with a smaller seasonal cycle have a positive low flow bias. Finally, we find that data points with extreme error (defined as individual days with a high fraction of total error) are more common in arid basins with limited snow, and, for a given aridity, fewer extreme error days are present as basin snow water equivalent increases.


2014 ◽  
Vol 7 (5) ◽  
pp. 2477-2484 ◽  
Author(s):  
J. C. Kathilankal ◽  
T. L. O'Halloran ◽  
A. Schmidt ◽  
C. V. Hanson ◽  
B. E. Law

Abstract. A semi-parametric PAR diffuse radiation model was developed using commonly measured climatic variables from 108 site-years of data from 17 AmeriFlux sites. The model has a logistic form and improves upon previous efforts using a larger data set and physically viable climate variables as predictors, including relative humidity, clearness index, surface albedo and solar elevation angle. Model performance was evaluated by comparison with a simple cubic polynomial model developed for the PAR spectral range. The logistic model outperformed the polynomial model with an improved coefficient of determination and slope relative to measured data (logistic: R2 = 0.76; slope = 0.76; cubic: R2 = 0.73; slope = 0.72), making this the most robust PAR-partitioning model for the United States currently available.


Author(s):  
David Vogel

This book examines the politics of consumer and environmental risk regulation in the United States and Europe over the last five decades, explaining why America and Europe have often regulated a wide range of similar risks differently. It finds that between 1960 and 1990, American health, safety, and environmental regulations were more stringent, risk averse, comprehensive, and innovative than those adopted in Europe. But since around 1990 global regulatory leadership has shifted to Europe. What explains this striking reversal? This book takes an in-depth, comparative look at European and American policies toward a range of consumer and environmental risks, including vehicle air pollution, ozone depletion, climate change, beef and milk hormones, genetically modified agriculture, antibiotics in animal feed, pesticides, cosmetic safety, and hazardous substances in electronic products. The book traces how concerns over such risks—and pressure on political leaders to do something about them—have risen among the European public but declined among Americans. The book explores how policymakers in Europe have grown supportive of more stringent regulations while those in the United States have become sharply polarized along partisan lines. And as European policymakers have grown more willing to regulate risks on precautionary grounds, increasingly skeptical American policymakers have called for higher levels of scientific certainty before imposing additional regulatory controls on business.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard Johnston ◽  
Xiaohan Yan ◽  
Tatiana M. Anderson ◽  
Edwin A. Mitchell

AbstractThe effect of altitude on the risk of sudden infant death syndrome (SIDS) has been reported previously, but with conflicting findings. We aimed to examine whether the risk of sudden unexpected infant death (SUID) varies with altitude in the United States. Data from the Centers for Disease Control and Prevention (CDC)’s Cohort Linked Birth/Infant Death Data Set for births between 2005 and 2010 were examined. County of birth was used to estimate altitude. Logistic regression and Generalized Additive Model (GAM) were used, adjusting for year, mother’s race, Hispanic origin, marital status, age, education and smoking, father’s age and race, number of prenatal visits, plurality, live birth order, and infant’s sex, birthweight and gestation. There were 25,305,778 live births over the 6-year study period. The total number of deaths from SUID in this period were 23,673 (rate = 0.94/1000 live births). In the logistic regression model there was a small, but statistically significant, increased risk of SUID associated with birth at > 8000 feet compared with < 6000 feet (aOR = 1.93; 95% CI 1.00–3.71). The GAM showed a similar increased risk over 8000 feet, but this was not statistically significant. Only 9245 (0.037%) of mothers gave birth at > 8000 feet during the study period and 10 deaths (0.042%) were attributed to SUID. The number of SUID deaths at this altitude in the United States is very small (10 deaths in 6 years).


2011 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Craig G. Webster ◽  
William W. Turechek ◽  
H. Charles Mellinger ◽  
Galen Frantz ◽  
Nancy Roe ◽  
...  

To the best of our knowledge, this is the first report of GRSV infecting tomatillo and eggplant, and it is the first report of GRSV infecting pepper in the United States. This first identification of GRSV-infected crop plants in commercial fields in Palm Beach and Manatee Counties demonstrates the continuing geographic spread of the virus into additional vegetable production areas of Florida. This information indicates that a wide range of solanaceous plants is likely to be infected by this emerging viral pathogen in Florida and beyond. Accepted for publication 27 June 2011. Published 25 July 2011.


1939 ◽  
Vol 33 (2) ◽  
pp. 283-291
Author(s):  
Clark H. Woodward

In the conduct of foreign policy and the participation of the United States in international affairs, the relation between the Navy and the Foreign Service is of vital importance, but often misunderstood. The relationship encompasses the very wide range of coördination and coöperation which should and must exist between the two interdependent government agencies in peace, during times of national emergency, and, finally, when the country is engaged in actual warfare. The relationship involves, as well, the larger problem of national defense, and this cannot be ignored if the United States is to maintain its proper position in world affairs.


2008 ◽  
Vol 88 (5) ◽  
pp. 761-774 ◽  
Author(s):  
J. A. P. Pollacco

Hydrological models require the determination of fitting parameters that are tedious and time consuming to acquire. A rapid alternative method of estimating the fitting parameters is to use pedotransfer functions. This paper proposes a reliable method to estimate soil moisture at -33 and -1500 kPa from soil texture and bulk density. This method reduces the saturated moisture content by multiplying it with two non-linear functions depending on sand and clay contents. The novel pedotransfer function has no restrictions on the range of the texture predictors and gives reasonable predictions for soils with bulk density that varies from 0.25 to 2.16 g cm-3. These pedotransfer functions require only five parameters for each pressure head. It is generally accepted that the introduction of organic matter as a predictor improves the outcomes; however it was found by using a porosity based pedotransfer model, using organic matter as a predictor only modestly improves the accuracy. The model was developed employing 18 559 samples from the IGBP-DIS soil data set for pedotransfer function development (Data and Information System of the International Geosphere Biosphere Programme) database that embodies all major soils across the United States of America. The function is reliable and performs well for a wide range of soils occurring in very dry to very wet climates. Climatical grouping of the IGBP-DIS soils was proposed (aquic, tropical, cryic, aridic), but the results show that only tropical soils require specific grouping. Among many other different non-climatical soil groups tested, only humic and vitric soils were found to require specific grouping. The reliability of the pedotransfer function was further demonstrated with an independent database from Northern Italy having heterogeneous soils, and was found to be comparable or better than the accuracy of other pedotransfer functions found in the literature. Key words: Pedotransfer functions, soil moisture, soil texture, bulk density, organic matter, grouping


2006 ◽  
Vol 36 (11) ◽  
pp. 3015-3028 ◽  
Author(s):  
Martin E Alexander ◽  
Miguel G Cruz

We evaluated the predictive capacity of a rate of spread model for active crown fires (M.G. Cruz, M.E. Alexander, and R.H. Wakimoto. 2005. Can. J. For. Res. 35: 1626–1639) using a relatively large (n = 57) independent data set originating from wildfire observations undertaken in Canada and the United States. The assembled wildfire data were characterized by more severe burning conditions and fire behavior in terms of rate of spread and the degree of crowning activity than the data set used to parameterize the crown fire rate of spread model. The statistics used to evaluate model adequacy showed good fit and a level of uncertainty considered acceptable for a wide variety of fire management and fire research applications. The crown fire rate of spread model predicted 42% of the data with an error lower then ±25%. Mean absolute percent errors of 51% and 60% were obtained for Canadian and American wildfires, respectively. The characteristics of the data set did not allow us to determine where model performance was weaker and consequently identify its shortcomings and areas of future improvement. The level of uncertainty observed suggests that the model can be readily utilized in support of operational fire management decision making and for simulations in fire research studies.


2021 ◽  
pp. 215336872110389
Author(s):  
Andrew J. Baranauskas

In the effort to prevent school shootings in the United States, policies that aim to arm teachers with guns have received considerable attention. Recent research on public support for these policies finds that African Americans are substantially less likely to support them, indicating that support for arming teachers is a racial issue. Given the racialized nature of support for punitive crime policies in the United States, it is possible that racial sentiment shapes support for arming teachers as well. This study aims to determine the association between two types of racial sentiment—explicit negative feelings toward racial/ethnic minority groups and racial resentment—and support for arming teachers using a nationally representative data set. While explicit negative feelings toward African Americans and Hispanics are not associated with support for arming teachers, those with racial resentments are significantly more likely to support arming teachers. Racial resentment also weakens the effect of other variables found to be associated with support for arming teachers, including conservative ideology and economic pessimism. Implications for policy and research are discussed.


2021 ◽  
Author(s):  
Marni Mack ◽  
Argo Easston

In the United States, sepsis, the body's response to infection in a typically sterile circulation, is a leading causeof death (1). To assess the primary transcriptional alterations associated with each illness state, I utilized amicroarray data set from a cohort of thirtyone individuals with septic shock or systemic inflammatory responsesyndrome (2). At the transcriptional level, I discovered that the granulocytes of patients with SIRS weresimilar to those of patients with septic shock. SIRS showed a “intermediate” gene expression state betweenthat of control patients and that of septic shock patients for numerous genes expressed in the granulocyte. Thediscovery of the most differentially expressed genes in the granulocytic immune cells of patients with septicshock might aid the development of new therapies or diagnostics for an illness with a 14.7 percent to 29.9% inhospitaldeath rate despite decades of study (1).


Sign in / Sign up

Export Citation Format

Share Document