Integrating evidence of potential impacts of climate-smart agriculture in Tanzania.

Author(s):  
Kristal Jones ◽  
Andreea Nowak ◽  
Erika Berglund ◽  
Willow Grinnell ◽  
Emmanuel Temu ◽  
...  

Abstract National governments across Sub-Saharan Africa include climate-smart agriculture (CSA) - context-specific interventions that support resilience, productivity, and climate mitigation-in plans and policies and strategies to jointly address climate change, agricultural production and rural livelihood goals. This paper synthesizes the evidence on field-based CSA management practices generated through ten years of research led by the CGIAR in Tanzania, an agriculturally diverse country in East Africa that has prioritized climate-smart agriculture practices in its climate adaptation strategies. Tanzania provides an illustrative example of how countries can use evidence of impacts, synergies and tradeoffs to prioritize activities for sustainable development.

Climate ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 132 ◽  
Author(s):  
Victor O. Abegunde ◽  
Melusi Sibanda ◽  
Ajuruchukwu Obi

Climate-smart agriculture (CSA) as a credible alternative to tackle food insecurity under the changing climate is gaining wide acceptance. However, many developing countries have realized that concepts that have been recommended as solutions to existing problems are not suitable in their contexts. This paper synthesizes a subset of literature on CSA in the context of small-scale agriculture in sub-Saharan Africa as it relates to the need for CSA, factors influencing CSA adoption, and the challenges involved in understanding and scaling up CSA. Findings from the literature reveal that age, farm size, the nature of farming, and access to extension services influence CSA adoption. Many investments in climate adaptation projects have found little success because of the sole focus on the technology-oriented approach whereby innovations are transferred to farmers whose understanding of the local farming circumstances are limited. Climate-smart agriculture faces the additional challenge of a questionable conceptual understanding among policymakers as well as financing bottlenecks. This paper argues that the prospects of CSA in small-scale agriculture rest on a thorough socio-economic analysis that recognizes the heterogeneity of the small farmer environment and the identification and harnessing of the capacities of farming households for its adoption and implementation.


2018 ◽  
Vol 27 (3) ◽  
pp. 34001 ◽  
Author(s):  
Robert B. Zougmoré ◽  
Samuel T. Partey ◽  
Mathieu Ouédraogo ◽  
Emmanuel Torquebiau ◽  
Bruce M. Campbell

In the literature, a lot of information is available about climate change perceptions and impacts in sub-Saharan Africa. However, there is limited attention in the region to emerging initiatives, technologies and policies that are tailored to building the adaptive capacity of agricultural systems to climate change and variability. In this paper, we discuss the prospects for climate-smart agriculture technologies and enabling policies in dealing with climate change and variability at different sub-regional levels of sub-Saharan Africa to sustain farm productivity and livelihoods of agrarian communities. The review provides substantial information suggesting that without appropriate interventions, climate change and variability will affect agricultural yields, food security and add to the presently unaceptable levels of poverty in sub-Saharan Africa. Although some of them were already existing, the past decades have seen the development and promotion of climate-smart agriculture innovations such as the use of high yielding drought tolerant crop varieties, climate information services, agricultural insurance, agroforestry, water harvesting techniques, integrated soil fertility management practices, etc. In the context of climate change, this appears as a stepping up approach to sustainably improving farm productivity, rural livelihoods and adaptive capacity of farmers and production systems while contributing to mitigation. The development of regional, sub-regional and national climate change policies and plans targeted at mitigating climate change and improving adaptive capacity of the African people have also been developed to enable mainstreaming of climate-smart agriculture into agricultural development plans. Financial commitments from governments and development agencies will be crucial for improving large scale adoption of climate-smart agriculture.


2021 ◽  
Author(s):  
Samuel Eze ◽  
Andrew Dougill ◽  
Steven Banwart ◽  
Susannah Sallu ◽  
Rashid Mgohele ◽  
...  

<p>Soil health is key to building resilience into agricultural and food systems in sub-Saharan Africa (SSA), where climate change presents a major challenge and unsustainable land management practices have exacerbated land degradation. A suite of interventions labelled climate-smart agriculture (CSA) such as conservation agriculture (cover cropping, mulching, crop rotation, intercropping, minimum/zero tillage, crop residue management), soil and water conservation (contour planting, terraces and bunds, planting pits, and irrigation) and agroforestry are promoted in SSA to improve soil health but adoption among smallholder farmers remains low. A strong evidence base on the impacts of CSA interventions on soil health in different agro-ecosystems in SSA is lacking. This contributes to weak policies and institutional support as well as conflicting messages that farmers receive about CSA impacts, which limit their adoption and lead to disadoption. Farmers’ knowledge of their soils influences their land management decisions and is an important factor in the uptake of CSA interventions. Using a multi-method approach that combines conventional soil testing and farmers’ visual techniques, we examined the impacts of soil and water conservation techniques on soil health indicators in the East Usambara Mountains of Tanzania. The link between farmers’ soil knowledge and their land management decisions was also explored in a wider review of lessons from the African Highlands. Farmers’ observed changes in selected soil health indicators, which influenced their land management decisions did not always match results of conventional soil testing, highlighting the need for integrating farmers’ observational techniques and conventional soil testing for a more targeted and comprehensive assessment of soil health. A hybrid approach to soil assessment is outlined that could foster greater uptake of sustainable land management practices including CSA by farmers in SSA and should be proactively pursued by soil scientists to ensure that their efforts translate to actions by land managers.</p>


Author(s):  
Clifton Makate

Purpose The purpose of this study is to discuss how enhancing the role of local institutions (LI) and incorporating indigenous knowledge (IK) in climate change adaptation planning can improve adoption and scaling success of climate-smart agriculture innovations. Design/methodology/approach A review of relevant literature from sub-Saharan Africa was used to answer the study research questions. Findings Embracing IK and LI in climate change adaptation projects can enhance adoption and scaling success of climate-smart agriculture innovations in smallholder farming. Such efforts will improve: information gathering and dissemination, mobilization of resources, establishment of useful networks with relevant stakeholders, capacity building farmers on various fronts and provision of leadership in climate adaptation programs. Practical implications Fully embracing IK and LI can improve the scaling of climate-smart innovations only if development partners recognize IK systems that are to be transformed and build on them instead of trying to replace them. Also, participatory approaches in scaling innovations will enhance input from rural people in climate change adaptation programs. Originality/value Development interventions aimed at taking proven effective climate-smart innovations to scale must, therefore, engage local communities and their indigenous institutions as active stakeholders in designing, planning and implementation of their climate adaptation programs.


2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Charity M. Wangithi ◽  
Beatrice W. Muriithi ◽  
Raphael Belmin

The invasive fruit fly Bactrocera dorsalis poses a major threat to the production and trade of mango in sub-Saharan Africa. Farmers devise different innovations to manage the pest in an attempt to minimize yield loss and production costs while maximizing revenues. Using survey data obtained from Embu County, Kenya, we analyzed farmers’ knowledge and perception as regards the invasive fruit fly, their innovations for the management of the pest, and the determinants of their adoption and dis-adoption decisions of recently developed and promoted integrated pest management (IPM) technologies for suppression of the pest. The results show that farmers consider fruit flies as a major threat to mango production (99%) and primarily depend on pesticides (90%) for the management of the pest. Some farmers (35%) however use indigenous methods to manage the pest. Though farmers possess good knowledge of different IPM strategies, uptake is relatively low. The regression estimates show that continued use of IPM is positively associated with the gender and education of the household head, size of a mango orchard, knowledge on mango pests, training, contact with an extension officer, and use of at least one non-pesticide practice for fruit fly management, while IPM dis-adoption was negatively correlated with the size of the mango orchard, practice score and use of indigenous innovations for fruit fly management. We recommend enhancing farmer′s knowledge through increased access to training programs and extension services for enhanced adoption of sustainable management practices for B. dorsalis.


2021 ◽  
Vol 6 (1) ◽  
pp. e003499
Author(s):  
Ryan G Wagner ◽  
Nigel J Crowther ◽  
Lisa K Micklesfield ◽  
Palwende Romauld Boua ◽  
Engelbert A Nonterah ◽  
...  

IntroductionCardiovascular disease (CVD) risk factors are increasing in sub-Saharan Africa. The impact of these risk factors on future CVD outcomes and burden is poorly understood. We examined the magnitude of modifiable risk factors, estimated future CVD risk and compared results between three commonly used 10-year CVD risk factor algorithms and their variants in four African countries.MethodsIn the Africa-Wits-INDEPTH partnership for Genomic studies (the AWI-Gen Study), 10 349 randomly sampled individuals aged 40–60 years from six sites participated in a survey, with blood pressure, blood glucose and lipid levels measured. Using these data, 10-year CVD risk estimates using Framingham, Globorisk and WHO-CVD and their office-based variants were generated. Differences in future CVD risk and results by algorithm are described using kappa and coefficients to examine agreement and correlations, respectively.ResultsThe 10-year CVD risk across all participants in all sites varied from 2.6% (95% CI: 1.6% to 4.1%) using the WHO-CVD lab algorithm to 6.5% (95% CI: 3.7% to 11.4%) using the Framingham office algorithm, with substantial differences in risk between sites. The highest risk was in South African settings (in urban Soweto: 8.9% (IQR: 5.3–15.3)). Agreement between algorithms was low to moderate (kappa from 0.03 to 0.55) and correlations ranged between 0.28 and 0.70. Depending on the algorithm used, those at high risk (defined as risk of 10-year CVD event >20%) who were under treatment for a modifiable risk factor ranged from 19.2% to 33.9%, with substantial variation by both sex and site.ConclusionThe African sites in this study are at different stages of an ongoing epidemiological transition as evidenced by both risk factor levels and estimated 10-year CVD risk. There is low correlation and disparate levels of population risk, predicted by different risk algorithms, within sites. Validating existing risk algorithms or designing context-specific 10-year CVD risk algorithms is essential for accurately defining population risk and targeting national policies and individual CVD treatment on the African continent.


Water Policy ◽  
2007 ◽  
Vol 9 (4) ◽  
pp. 373-391 ◽  
Author(s):  
Peter A. Harvey

Access to safe, sufficient and affordable water in rural Africa will not increase unless sustainable financing strategies are developed which ensure the sustainability of existing water services. There is a strong need for international donors and national governments to confront the true costs associated with sustained service provision in order to develop practicable long-term financing mechanisms. This paper presents a systematic approach that can be applied to determine the overall cost of service delivery based on respective cost estimates for operation and maintenance, institutional support, and rehabilitation and expansion. This can then be used to develop a tariff hierarchy which clearly indicates the cost to water users of different levels of cost recovery, and which can be used as a planning tool for implementing agencies. Community financing mechanisms to ensure sustained payment of tariffs must be matched to specific communities and their economic characteristics; a blanket approach is unlikely to function effectively. Innovative strategies are also needed to ensure that the rural poor are adequately served, for which a realistic, targeted and transparent approach to subsidy is required.


2017 ◽  
Vol 5 (1) ◽  
pp. 50
Author(s):  
Kalifa TRAORE ◽  
Daouda SIDIBE ◽  
Harouna COULIBALY

Climate variability and change are recognized as the greatest challenge to crop production and food security in sub-Saharan Africa. This work assesses farmers’ perception on the contribution of improved varieties of sorghum and millet in the search for food security in Cinzana rural commune of Mali in the current context of climate change.The methodology was based on focus group surveys with both, the decentralized technical services, administrative and municipal authorities, NGOs, farmer organizations and producers but also farmer exchanges visits on improved varieties tested in farmer’s field.The result shows that climate change is described by the majority of farmers (87%) as decrease in rainfall amount and length of rainy seasons, high increases in temperature and high deforestation and water scarcity. Unpredictability of climate, (80%), drought (70%) and heavy rain (65%) occurrence were identified as major perception of farmers on risks in climate for crop production and soil degradation. After farmers’ study tour, 80% of the participants mentioned a better growth of plants and increase of soil moisture with the use of contour ridges tillage as a water conservation technology. Adapted cycle (55%) and higher yield (37%) of improved varieties were farmer’s main drivers for adoption of improved millet and sorghum varieties.The study revealed that local farmers have substantial knowledge on climate variabilities and risks and also are aware of some adaptation strategies. However, for wide scale adoption of effective strategies, capacity strengthening appeared a prerequisite.


Author(s):  
Chinedu Egbunike ◽  
Nonso Okoye ◽  
Okoroji-Nma Okechukwu

Climate change is a major threat to agricultural food production globally and locally. It poses both direct and indirect effects on soil functions. Thus, agricultural management practices has evolved to adaptation strategies in order to mitigate the risks and threats from climate change. The study concludes with a recommendation the coconut farmers should explore the idea of soil biodiversity in a bid to mitigate the potential negative impact of climate related risk on the farming. The study proffers the need for adopting sustainable agricultural practices to boost local coconut production. This can contribute to the simultaneous realisation of two of the Sustainable Development Goals (SDGs) of the United Nations: SDG 2 on food security and sustainable agriculture and SDG 13 on action to combat climate change and its impacts. The study findings has implications for tackling climate change in Sub-Saharan Africa and in particular Nigeria in order to boost local agricultural production and coconut in particular without negative environmental consequences and an ability to cope with climate change related risks.


Sign in / Sign up

Export Citation Format

Share Document