Strain Analysis of Transfer Faults in Extending Regions: Inferences from Micropolar Theory

Author(s):  
Bülent Tokay ◽  
Erdin Bozkurt

<p>Transfer faults are generally identified as transversely oriented discrete faults linking normal fault segments in extensional tectonic settings.  The presence of the transfer faults in fault networks provides displacement transfer between the normal faults. The role and tectonic significance of transfer faults in overall extensional deformation of the upper crust is however not known very well. Micropolar theory extended by J-2 plasticity facilitates evaluation of a deforming medium in which cataclastic flow takes place with respect to each component of deformation. In this study, a series of experiments based on the Micropolar theory are performed, using fault-slip patterns, to better understand interplay among dip angle of normal and transfer faults connecting to each other, angle of linkage, and extensional direction. Synthetic linkage cases are created systematically considering various orientation of both faults sharing common stretching direction.<br>Our findings reveal that in orthogonal and oblique linkage cases, 3D strain field is mostly observed; a few cases exhibit plane strain. All cases are subjected to simple shearing. In cases of orthogonal linkage, extensional direction is predominantly oblique to the strike of the normal faults. Many of these cases have no block rotation (microrotation) independent from macrorotation. No particular relationship between changing dip amount of faults and direction of extension is observed. In cases of oblique linkage, (sub)orthogonal direction of extension appear in nearly half of experiments, especially those including normal faults dipping less than 60˚. The frequency of non-zero microrotation is seen apparently more than that in orthogonal linkage cases.<br>The study represents that structural togetherness of the transfer and normal faults essentially can accommodate complete micropolar strain in a region. This further suggests that not only the normal faults but the transfer faults should also be considered as major primary structural elements in extending domains.</p>

2020 ◽  
Author(s):  
Chao-Hsun Wang ◽  
Pin-Rong Wu ◽  
Kenn-Ming Yang ◽  
Chih-Cheng Barry Yang ◽  
Ching-Weei Lin

<p>Development of normal fault that are affected by inherited extensional tectonic settings can be observed in many rift basins and is highly related to the some parameters, such as mechanical contrast between layers in different successive extensional tectonics, extensional ratio and post-rift stratal thickness of the inherited rift, etc. The South Depression of Tainan Basin (SD-TB), which consists of several half-grabens and went through two phases of rifting during the Paleogene and Neogene respectively, is one of a series of E-W to NE-SW trending Cenozoic rift basins in NE South China Sea. The main purpose of this study is, based on detailed description of normal fault structures on seismic sections and numerical PFC models, to investigate the sequential development of normal faults during the successive rifting and the effects of inherited tectonics on time-spatial distribution of the younger normal faults in the depression.</p><p>The normal faults in SD-TB can be grouped into three types. Type 1 normal faults cut downward through the pre-, syn- and the lowest part of post-rift strata of the Paleogene rift, Type 2 normal faults only cut off the Neogene strata, and Type 3 normal faults cut off both the Paleogene and Neogene strata and down to the basement. There is distinct distribution for the Type 2 normal faults; for the thinner post-rift strata of the Paleogene rift, the Type 2 normal faults would widely distribute in the area over the Paleogene grabens during the Neogene rifting, or rather concentrate on the margin the older graben if the post-rift strata are thick. As for Type 3 normal faults, the first type are the upward extended part of Type 1 normal faults that are characterized by significant displacement during the Paleogene rifting and the second type are located outside of the older grabens.</p><p>Such spatial distribution of normal faults can be demonstrated by numerical PFC models as set with different thickness of post-rift strata of the Paleogene rift before the initiation of the Neogene rifting. The models also demonstrate that the second type of Type 3 normal faults outside of the older graben initially were Type 2 normal faults but further cut downward to become Type 3 normal faults. While the second type of Type 3 normal faults have developed at variable thickness of post-rift strata, the first type did formed in the cases that thicker post-rift strata were deposited.</p><p>We propose that the thick post-rift strata of the Paleogene rift are related with the greater displacement along the main boundary fault of the graben, which not only created thick syn-rift strata but also induced significant post-rift subsidence as indicated by the estimated extension ratio. Also for the thicker post-rift strata, the induced stress during the Neogene rifting was more focusing over the inherited main boundary faults and caused the localized Type 2 normal fault and the first type of Type 3 normal faults.</p><p> </p><p>Key words: Normal fault, Inherited structure, Numerical PFC model, South China Sea</p>


Geosciences ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 144
Author(s):  
Luigi Vadacca

Geological and geophysical evidence suggests that the Altotiberina low-angle (dip angle of 15–20 ° ) normal fault is active in the Umbria–Marche sector of the Northern Apennine thrust belt (Italy). The fault plane is 70 km long and 40 km wide, larger and hence potentially more destructive than the faults that generated the last major earthquakes in Italy. However, the seismic potential associated with the Altotiberina fault is strongly debated. In fact, the mechanical behavior of this fault is complex, characterized by locked fault patches with a potentially seismic behavior surrounded by aseismic creeping areas. No historical moderate (5 ≤ Mw ≤ 5.9) nor strong (6 ≤ Mw ≤ 6.9)-magnitude earthquakes are unambiguously associated with the Altotiberina fault; however, microseismicity is scattered below 5 km within the fault zone. Here we provide mechanical evidence for the potential activation of the Altotiberina fault in moderate-magnitude earthquakes due to stress transfer from creeping fault areas to locked fault patches. The tectonic extension in the Umbria–Marche crustal sector of the Northern Apennines is simulated by a geomechanical numerical model that includes slip events along the Altotiberina and its main seismic antithetic fault, the Gubbio fault. The seismic cycles on the fault planes are simulated by assuming rate-and-state friction. The spatial variation of the frictional parameters is obtained by combining the interseismic coupling degree of the Altotiberina fault with friction laboratory measurements on samples from the Zuccale low- angle normal fault located in the Elba island (Italy), considered an older exhumed analogue of Altotiberina fault. This work contributes a better estimate of the seismic potential associated with the Altotiberina fault and, more generally, to low-angle normal faults with mixed-mode slip behavior.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


2015 ◽  
Vol 55 (2) ◽  
pp. 467
Author(s):  
Alexander Robson ◽  
Rosalind King ◽  
Simon Holford

The authors used three-dimensional (3D) seismic reflection data from the central Ceduna Sub-Basin, Australia, to establish the structural evolution of a linked normal fault assemblage at the extensional top of a gravitationally driven delta system. The fault assemblage presented is decoupled at the base of a marine mud from the late Albian age. Strike-linkage has created a northwest–southeast oriented assemblage of normal fault segments and dip-linkage through Santonian strata, which connects a post-Santonian normal fault system to a Cenomanian-Santonian listric fault system. Cenomanian-Santonian fault growth is on the kilometre scale and builds an underlying structural grain, defining the geometry of the post-Santonian fault system. A fault plane dip-angle model has been created and established through simplistic depth conversion. This converts throw into fault plane dip-slip displacement, incorporating increasing heave of a listric fault and decreasing in dip-angle with depth. The analysis constrains fault growth into six evolutionary stages: early Cenomanian nucleation and radial growth of isolated fault segments; linkage of fault segments by the latest Cenomanian; latest Santonian Cessation of fault growth; erosion and heavy incision during the continental break-up of Australia and Antarctica (c. 83 Ma); vertically independent nucleation of the post-Santonian fault segments with rapid length establishment before significant displacement accumulation; and, continued displacement into the Cenozoic. The structural evolution of this fault system is compatible with the isolated fault model and segmented coherent fault model, indicating that these fault growth models do not need to be mutually exclusive to the growth of normal fault assemblages.


1970 ◽  
Vol 2 (2) ◽  
pp. 57-65
Author(s):  
M Farhad Howladar ◽  
Sharmin Afroz ◽  
Shofiqul Islam

Finite elements analysis is a powerful tool, often used for analyzing problems on stress, that can be successfully employed to analyze the finite deformation of geological structures in a mathematical form on a digital computer. Over the last century, great earthquakes with magnitudes of 7->8 have struck in the NW Himalaya; the 1905 Kangra earthquake is one of them. This study performed a plane strain analysis of failure stress and faults in these earthquakes potential region based on the seismic geologic cross profile employing the two-dimensional finite element method under elastic material state with Mohr Coulomb failure criterion. The results show that the normal fault initiates at deeper level, whereas with increasing convergent displacement the thrust fault appears in the shallower region. The results of the simulation are compared with the available seismic and earthquakes focal mechanism solution data of the area which shows the close similarities between the distribution of simulated fault and microseismicity in the deeper region of Chamba Nappe (CN) and along the upper part of the Mid Crustal Ramp (MCR) which might be the Seismic Fault Zone (SFZ) of the region. Moreover, the intense localization of faults along the frontal part of the model indicates that this part is active in nature at present, which is responsible for the neotectonics in the Himalayas. Keywords: NW Himalaya; numerical technique; seismic fault zone; neotectonics DOI: 10.3329/jles.v2i2.7499 J. Life Earth Sci., Vol. 2(2) 57-65, 2007  


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


1991 ◽  
Vol 31 (1) ◽  
pp. 154 ◽  
Author(s):  
R.J. Malcolm ◽  
M.C. Pott ◽  
E. Delfos

The North West Cape area in the Exmouth Sub-basin was the site of the first onshore oil flow in Australia at Rough Range-1 in 1953. Subsequently, exploration focused on two large surface anticlines, Cape Range and Rough Range. By 1984, 30 unsuccessful wells had made it clear that the subsurface was far more complex than indicated by the surface mapping and limited seismic data. A detailed reappraisal of the subsurface structure and stratigraphy was needed.A joint venture group operated by Ampol Exploration began a new phase of exploration by recording over 1200 km of seismic data, both regional and detailed, between 1985 and 1989. An integrated interpretation of seismic data, well information and Landsat imagery has improved the understanding of structural and stratigraphic complexities and has given direction to the current exploration effort.Five of the most significant tectonic episodes to affect the North West Cape area have been recognised. They are Late Carboniferous and Early Jurassic (Sinemurian) rifting phases, Callovian-Oxfordian and Berriasian-Valanginian syn-rift pulses related to break-up and, finally, structural inversion in the Late Miocene. Each of these episodes is associated with characteristic structural styles and stratigraphic sequences.Significant lateral displacement along transfer faults during Sinemurian rifting and again during the Berriasian- Valanginian syn-rift pulse has resulted in the formation of tear faults that swing westward and merge with the plane of the transfer faults. Fault-block rotation and uplift associated with these tear faults provide potential structural and stratigraphic traps. The influence that transfer faults have on the hydrocarbon prospectivity of the North West Cape area has been recognised, including their role in the distribution of reservoir and source rocks.These tectono-stratigraphic concepts have provided a sound framework for future exploration in the North West Cape area, and may have implications for hydrocarbon prospectivity in other parts of the North West Shelf and on passive margins elsewhere.


2004 ◽  
Vol 141 (1) ◽  
pp. 63-79 ◽  
Author(s):  
ERDİN BOZKURT ◽  
HASAN SÖZBİLİR

Western Turkey is one of the most spectacular regions of widespread active continental extension in the world. The most prominent structures of this region are E–W-trending grabens (e.g. Gediz and Büyük Menderes grabens) and intervening horsts, exposing the Menderes Massif. This paper documents the result of a recent field campaign (field geological mapping and structural analysis) along the southern margin of the modern Gediz Graben of Pliocene (∼ 5 Ma) age. This work provides field evidence that the presently low-angle ductile-brittle detachment fault is cut and displaced by the high-angle graben-bounding normal faults with total displacement exceeding 2.0 km. The evolution of the N–S extension along the Gediz Graben occurred during two episodes, each characterized by a distinct structural styles: (1) rapid exhumation of Menderes Massif in the footwall of low-angle normal fault (core-complex mode) during the Miocene; (2) late stretching of crust producing E–W grabens along high-angle normal faults (rift mode) during Pliocene–Quaternary times, separated by a short-time gap. The later phase is characterized by the deposition of now nearly horizontal sediments of Pliocene age in the hanging walls of the high-angle normal faults and present-day graben floor sediments. The evolution of extension is at variance with orogenic collapse and/or back-arc extension followed by the combined effect of tectonic escape and subduction rollback processes along the Aegean-Cyprean subduction zone. Consequently, it is misleading to describe the Miocene sediments exhumed on shoulders of the Gediz Graben as simple graben fill.


2013 ◽  
Vol 779-780 ◽  
pp. 332-336
Author(s):  
Ping Cao ◽  
Wen Cheng Fan ◽  
Ke Zhang

To study the failure mechanism and failure mode of jointed rock under compressive-shear, many rock-like material specimens containing non-coplanar joints were made and a series of experiments were carried out. In the experiments, mica sheets were used as joint fillings, cement mortar was selected as rock-like material. Joints were made by inserting the mica sheet in cement mortar before initial setting. Mica sheets were left down as joint fillings. The results of experiments show that the dip angles of major joint have important influence on the failure mode of specimens. And the emerging position of wing cracks which exist in the prophase of specimens failure process changes with the dip angle. The shear strength of specimens has an important relationship with the dip angle of major joints. The smallest shear strength happens in the specimen with a joint angle of 15°, while the biggest value happens in 60°.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Shunshan Xu ◽  
Ángel Nieto-Samaniego ◽  
Susana Alaniz-Álvarez ◽  
Luis Velasquillo-Martínez

AbstractRotation of faults or pre-existing weakness planes produce two effects on the slickenlines of fault planes. First, the rotation leads to changes in the pitch of slickenlines. As a result, the aspect of the pre-existing fault may change. For example, after rotation, a normal fault may show features of an oblique fault, a strike-slip fault, or a thrust fault. Second, due to rotation, stress states on the fault planes are different from those before the rotation. As a consequence some previous planes may be reactivated. For an isolated plane, the reactivation due to rotation can produce new sets of slickenlines. With block rotation, superimposed slickenlines can be generated in the same tectonic phase. Thus, it is not appropriate to use fault-slip data from slickenlines to analyze the stress tensor in a region where there is evidence of block rotation. As an example, we present the data of slickenlines from core samples in the Tunich area of the Gulf of Mexico. The results wrongly indicate that the calculated stress tensor deviates from the far-field stress tensor.


Sign in / Sign up

Export Citation Format

Share Document