On exposure of land area and population to heat waves and cold waves in a changing climate

Author(s):  
Alexander Hampshire ◽  
Neven Fuckar ◽  
Clare Heaviside ◽  
Myles Allen

<p>As climate changes – potentially to a warmer state than any time during the evolution of humans – heat extremes threatening human health, global ecosystem and socio-economic fabric of our society are occurring at increasing frequency and intensity in most parts of the world. This study examines changes in global land area and population exposed to both tails of temperature distribution in changing climate since heat and cold exposure is directly associated with a range of health impacts and affects thermal comfort and occupational capacity. We first utilise the latest ECMWF atmospheric reanalysis, ERA5, to examine changes over the satellite era (since 1979), and then we explore the equivalent changes in CMIP6 archive of historical runs and future projections. Besides daily maximum and minimum of dry-bulb surface air temperature (SAT), we also consider daily extremes of the universal thermal climate index (UTCI) that includes the influence of humidity, wind and radiation encapsulating the synergetic heat exchanges between the environment and the human body. Our analysis dissects changes in spatial and temporal exposure to both heat waves and cold waves and presents metrics contrasting changes in the opposite extremes of SAT and UTCI distributions. We assess the significance of the observed, modelled and projected changes and relate them to external drivers of climate change.</p>

2019 ◽  
Author(s):  
Milica M. Pecelj ◽  
Milica Z. Lukić ◽  
Dejan J. Filipović ◽  
Branko M. Protić

Abstract. The objective of this paper is the assessment of bioclimatic conditions in Sebia. A special emphasis has been given to the heat budget bioclimatic Universal Thermal Climate Index (UTCI) whose purpose is to evaluate degree of thermal stress that human body is exposed to during the last twenty years. In addition, the thresholds of daily maximum temperatures are analysed in order to identify increase and frequency of heat waves in Serbia. For this research, daily and hourly (07 h and 14 h) meteorological data from 3 weather station (Mt. Zlatibor, Novi Sad, Niš) are collected for the period 1998–2017. The results show that the most frequent UTCI heat stress categories are strong heat stress and very strong heat stress. The most extreme heat waves events are occurred in 2007, 2012, 2015 and 2017. Moreover, there were three Heat wave events (HWE) in Niš occurred in July, 2007 lasting 3, 10 and 4 days in row. Heat wave events (HWE) In July 2007 (10 days) and July 2012 (9 days) in Niš are occurrences with maximum number of days in row recorded.


2020 ◽  
Vol 20 (7) ◽  
pp. 2021-2036
Author(s):  
Milica M. Pecelj ◽  
Milica Z. Lukić ◽  
Dejan J. Filipović ◽  
Branko M. Protić ◽  
Uroš M. Bogdanović

Abstract. The objective of this paper is to assess the bioclimatic conditions in Serbia during summer in order to identify biothermal heat hazard. Special emphasis is placed on the bioclimatic index UTCI (Universal Thermal Climate Index), whose purpose is to evaluate the degree of thermal stress that the human body is exposed to. For this research, mean daily and hourly (07:00 and 14:00 CET) meteorological data from three weather stations (Zlatibor, Novi Sad and Niš) have been collected for the period from 1998 to 2017. In order to identify patterns of biothermal heat stress conditions, the thresholds of the daily UTCI (UTCI ≥38 ∘C, referred to as very strong heat stress, VSHS) at 14:00 CET are compared with the thresholds of daily maximum air temperature (tmax⁡≥35 ∘C, referred to as hot days, HDs), which are further termed as heat wave events (HWEs). The findings show that the UTCI heat stress category “very strong heat stress“ at 14:00 CET indicates heat waves. The most extreme heat wave events occurred in 2007, 2012, 2015 and 2017. Moreover, three HWEs at Niš that occurred in July 2007 lasted 3, 10 and 4 d. HWEs and very strong heat stress events (VSHSEs) recorded in July 2007 (lasted 10 d each), 2012 (lasted 9 and 12 d) and 2015 (lasted 7 and 10 d) were of the longest duration and are considered to be the indicators of biothermal heat hazard. The daily UTCI14 h heat stress becomes more extreme in terms of severity and heat wave duration up to very strong heat stress.


2006 ◽  
Vol 19 (17) ◽  
pp. 4418-4435 ◽  
Author(s):  
Robin T. Clark ◽  
Simon J. Brown ◽  
James M. Murphy

Abstract Changes in extreme daily temperature events are examined using a perturbed physics ensemble of global model simulations under present-day and doubled CO2 climates where ensemble members differ in their representation of various physical processes. Modeling uncertainties are quantified by varying poorly constrained model parameters that control atmospheric processes and feedbacks and analyzing the ensemble spread of simulated changes. In general, uncertainty is up to 50% of projected changes in extreme heat events of the type that occur only once per year. Large changes are seen in distributions of daily maximum temperatures for June, July, and August with significant shifts to warmer conditions. Changes in extremely hot days are shown to be significantly larger than changes in mean values in some regions. The intensity, duration, and frequency of summer heat waves are expected to be substantially greater over all continents. The largest changes are found over Europe, North and South America, and East Asia. Reductions in soil moisture, number of wet days, and nocturnal cooling are identified as significant factors responsible for the changes. Although uncertainty associated with the magnitude of expected changes is large in places, it does not bring into question the sign or nature of the projected changes. Even with the most conservative simulations, hot extreme events are still expected to substantially increase in intensity, duration, and frequency. This ensemble, however, does not represent the full range of uncertainty associated with future projections; for example, the effects of multiple parameter perturbations are neglected, as are the effects of structural changes to the basic nature of the parameterization schemes in the model.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 163
Author(s):  
Bartłomiej Miszuk

Heat stress is one of the most critical factors affecting human life. In Central Europe, its influence is noticeable, especially in the Polish–Saxon region, which is a very popular tourist region also inhabited by a high number of elders. The main goal of this paper was to assess multi-annual changes in heat stress occurring in the region, considering the frequency of heat days, the UTCI (Universal Thermal Climate Index), and circulation conditions. The research showed that all the thermal and biothermal indices in this region significantly increased during 1971–2019 in the lowlands, the mountain foreland, and the lower mountain zone. In terms of the UTCI, a negative trend for cold stress frequency was noticed in the entire region in favor of an increase in a tendency toward thermoneutral conditions and heat stress. This concerns especially strong and very strong heat stress (UTCI > 32 °C), in which positive trends were observed for most of the stations located in the lower hypsometric zones. The results also showed that heat stress mainly occurs on days with anticyclonic circulation. Analysis of selected cases of heat waves in the 21st century indicated that the lower hypsometric zones are characterized by a very high UTCI, while the summit zone is free from heat stress occurrence.


Author(s):  
Krzysztof Błażejczyk ◽  
Robert Twardosz ◽  
Piotr Wałach ◽  
Kaja Czarnecka ◽  
Anna Błażejczyk

AbstractThe occurrence of long-lasting severe heat stress, such as in July–August 2003, July 2010, or in April–May 2018 has been one of the biggest meteorological threats in Europe in recent years. The paper focuses on the biometeorological and mortality effects of the hot June that was observed in Central Europe in 2019. The basis of the study was hourly and daily Universal Thermal Climate Index (UTCI) values at meteorological stations in Poland for June 2019. The average monthly air temperature and UTCI values from 1951 to 2018 were analysed as background. Grosswetterlagen calendar of atmospheric circulation was used to assess synoptic conditions of heat wave. Several heat strain measures were applied : net heat storage (S), modelled heart rate (HR), sultriness (HSI), and UTCI index. Actual total mortality (TM) and modelled strong heat-related mortality (SHRM) were taken as indicators of biometeorological consequences of the hot June in 2019. The results indicate that prolonged persistence of unusually warm weather in June 2019 was determined by the synoptic conditions occurring over the European region and causing advection of tropical air. They led to the emergence of heat waves causing 10% increase in TM and 5 times bigger SHRM then in preceding 10 years. Such increase in SHRM was an effect of overheating and overload of circulatory system of human organism.


2021 ◽  
Author(s):  
Wenmi Chai ◽  
Yu Huang ◽  
Lichao Yang ◽  
Heng Quan ◽  
Zuntao Fu

Abstract As an intrinsic feature of daily surface air temperature (SAT) variability found in station measurements, temporal asymmetry (TA) can be taken as an evaluation metric to access the quality of SAT re-analysis product. In this study, TA calculated from four SAT variables, i.e. daily mean SAT (Tmean), daily maximum SAT (Tmax), daily minimum SAT (Tmin) and diurnal temperature range (TDTR=Tmax-Tmin), is applied to evaluate synoptic-scale performance of four reanalysis products (NCEP-2, JRA-55, ERA-I and ERA-5) over China. The results show that four re-analyses overall overestimate the TA of daily Tmax and Tmin variability over China, but with a comparatively consistent estimated TA for Tmean. Moreover, the TA of Tmean variability for these four re-analyses shares high spatial consistency with those from the observation. However, four re-analyses own the similar region-dependent spatial patterns of overestimated TA for Tmax and Tmin variability, especially for Tmax. Since high TA is an indicator for strong nonlinear feature, only Tmean reanalysis is the most suitable to explore synoptic-scale extreme events, such as heat waves and cold waves, which are highly related to the strong nonlinear processes.


2016 ◽  
Vol 16 (3) ◽  
pp. 821-831 ◽  
Author(s):  
Guido Ceccherini ◽  
Simone Russo ◽  
Iban Ameztoy ◽  
Claudia Patricia Romero ◽  
Cesar Carmona-Moreno

Abstract. In recent decades there has been an increase in magnitude and occurrence of heat waves and a decrease of cold waves, both of which may be related to the anthropogenic influence. This study describes the extreme temperature regime of heat waves and cold waves across South America over recent years (1980–2014). Temperature records come from the Global Surface Summary of the Day (GSOD), a climatological data set produced by the National Climatic Data Center that provides records of daily maximum and minimum temperatures acquired worldwide. The magnitude of heat waves and cold waves for each GSOD station are quantified on an annual basis by means of the Heat Wave Magnitude Index and the Cold Wave Magnitude Index. Results indicate an increase in intensity and in frequency of heat waves, especially in the last 10 years. Conversely, no significant changes are detected for cold waves. In addition, the trend of the annual temperature range (i.e. yearly mean of Tmax – yearly mean of Tmin) is positive – up to 1 °C per decade – over the extratropics and negative – up to 0.5 °C per decade – over the tropics.


2015 ◽  
Vol 3 (12) ◽  
pp. 7379-7409 ◽  
Author(s):  
G. Ceccherini ◽  
S. Russo ◽  
I. Ameztoy ◽  
C. P. Romero ◽  
C. Carmona-Moreno

Abstract. In recent decades there has been an increase in magnitude and occurrence of heat waves and a decrease of cold waves which are possibly related to the anthropogenic influence (Solomon et al., 2007). This study describes the extreme temperature regime of heat waves and cold waves across South America over recent years (1980–2014). Temperature records come from the Global Surface Summary of the Day (GSOD), a climatological dataset produced by the National Climatic Data Center that provides records of daily maximum and minimum temperatures acquired worldwide. The magnitude of heat waves and cold waves for each GSOD station are quantified on annual basis by means of the Heat Wave Magnitude Index (Russo et al., 2014) and the Cold Wave Magnitude Index (CWMI, Forzieri et al., 2015). Results indicate an increase in intensity and in frequency of heat waves, with up to 75 % more events occurring only in the last 10 years. Conversely, no significant changes are detected for cold waves. In addition, the trend of the annual temperature range (i.e., yearly mean of Tmax – yearly mean of Tmin) is positive – up to 1 °C decade−1 – over the extra-tropics and negative – up to 0.5 °C decade−1 – over the tropic. This dichotomous behaviour indicates that the annual mean of Tmax is generally increasing more than the annual mean of Tmin in the extra-tropics and vice versa in the tropics.


2021 ◽  
Vol 22 (4) ◽  
pp. 477-487
Author(s):  
S. SHERAZ MAHDI ◽  
B. S. DHEKALE ◽  
SUBORNA ROY CHOUDHURY ◽  
MIZANUL HAQUE ◽  
SANJEEV KUMAR GUPTA

The climatological distribution of heat and cold waves of two important agro-climatic zones zone-I (North Alluvial Plain), zone-II (North East Alluvial Plain) of the middle Indo-Gangetic Basin of Bihar state of India was analyzed. We used series of daily maximum and minimum temperature data from 1969-2015 of five stations. Results reveal that zone-I and zone-II experienced 248/184 and 275/199average number of heat and cold events, respectively. The trend analysis exhibited almost similar results for both the zones. The zone-I experienced on an average 4.22 and 7.22 heat and cold wave days per season (hot & cold weather period), respectively. There was a non-significant increasing trend @ +0.04/year for heat waves and significant decreasing trend for cold waves (-0.13/year). Zone-II on an average experienced 3 and 12 HW and CW events per season (hot and cold weather period), respectively. In this zone, heat waves were found to be increasing @ +0.11/year, whereas, significant decreasing trend was found for cold waves (+0.32/year). Study also revealed that, heat waves were more frequent and longer in June and May in zone-I and zone-II, respectively. Whereas, cold waves were more freq uent and longer in January for both the zones. These extreme events have profound impact on wheat crop if coincides with its critical stages. However, shifting planting dates and adoption of heat tolerant varieties may help in minimizing the negative impact of these extreme events. 


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 321-331
Author(s):  
Yuki Iwamoto ◽  
Yukitaka Ohashi

This study provides a decade-long link between summer heatstroke incidence and certain heat stress indices in 47 prefectures of Japan. The results for each prefecture were determined from the age-adjusted heatstroke incidence rate (TRadj) with heatstroke patients transported by ambulance, as well as from the daily maximum temperature (TEMPmax), maximum wet-bulb globe temperature (WBGTmax), and maximum universal thermal climate index (UTCImax) recorded from July to September of 2010–2019. The UTCImax relatively increased the vulnerability in many prefectures of northern Japan more distinctly than the other indices. In the following analysis, the ratio of the TRadj of the hottest to coolest months using the UTCImax was defined as the heatstroke risk of the hottest to coolest (HRHC). Overall, the HRHC varied approximately from 20 to 40 in many prefectures in the past decade. In contrast, for the same analysis performed in each month, HRHC ratios in July and August fell within 2–4 in many prefectures, whereas in September, the average and maximum HRHC ratios for all prefectures were 7.0 and 32.4, respectively. This difference can be related to the large difference in UTCImax between the maximum and minimum for a decade.


Sign in / Sign up

Export Citation Format

Share Document