3D Numerical Mineral Mechanical Modeling of Fracture Propagation in Complex Reservoirs Rocks at Microscale

Author(s):  
Victor Nachev ◽  
Sergey Turuntaev

<p>Improved efficiency of hydraulic fracturing (HF) operations in complex reservoir rocks requires producing an extensive network of secondary fractures alongside the main fractures. The goal of the presented research is to find optimal stress-strain conditions yielding the most extensive network of secondary fractures at the microscale. The scope includes integrating results of microstructural characterization of tight gas reservoir rock samples and geomechanics. The study addresses the problem of hydraulic fracture optimization by suggesting stress-strain conditions to maximize fracture branching and, therefore, to optimize the drainage zone. We use a multidisciplinary approach including experimental data obtaining and numerical simulations. The first step is preparing a consistent set of 2D and 3D digital rock (DR) microscale models describing the experimental geometry, mineral composition and spatial distribution of mechanical properties of real rock samples. Geomechanical and petrophysical laboratory testing provide calibration/validation data for the DR models. Lab experiments include compressive and tensile strength testing coupled with digital image correlation, and X-ray computed tomography, 2D scanning electron microscopy coupled with mineralogy mapping. The preparation of DR models involves advanced 2D-to-3D and 3D-to-3D image registration techniques. The second step is a simulation of stress-strain states and fracture propagation in the models. We build simulation grids based on the mineral model and use a commercial mechanical simulator to simulate the fracture propagation at a microscale at given stress conditions. We applied the above approach to one of the most promising gas formations located in West Siberia, Russia. The reservoir rock features low permeability and pore dimensions down to tens of nanometers. Simulations delivered fracture networks for different loading conditions at the microscale. Simulation of typical geomechanical conditions allowed choosing reasonable stress-strain conditions that sustain the highest degree of formation fracturing. The research results may be applied to unconventional plays by increasing the efficiency of HF operation and maximizing production from isolated pore systems via establishing voids connectivity in the near-wellbore zone. The knowledge of the optimal stress-strain state for a near-wellbore zone will set the goal for HF propagation modeling at a wellbore scale. Using the approach, a geomechanical modeler would focus on designing main fractures, sustaining required stress-strain conditions in its vicinity, and thus producing the maximal amount of secondary microfractures. The results novelty is related with the simulation of 3D fracture propagation in highly heterogeneous reservoirs rocks taking into account its void space structure and fabric in geometry closest to real conditions.</p>

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2233 ◽  
Author(s):  
Aliya Mukhametdinova ◽  
Andrey Kazak ◽  
Tagir Karamov ◽  
Natalia Bogdanovich ◽  
Maksim Serkin ◽  
...  

This paper presents an integrated petrophysical characterization of a representative set of complex carbonate reservoir rock samples with a porosity of less than 3% and permeability of less than 1 mD. Laboratory methods used in this study included both bulk measurements and multiscale void space characterization. Bulk techniques included gas volumetric nuclear magnetic resonance (NMR), liquid saturation (LS), porosity, pressure-pulse decay (PDP), and pseudo-steady-state permeability (PSS). Imaging consisted of thin-section petrography, computed X-ray macro- and microtomography, and scanning electron microscopy (SEM). Mercury injection capillary pressure (MICP) porosimetry was a proxy technique between bulk measurements and imaging. The target set of rock samples included whole cores, core plugs, mini cores, rock chips, and crushed rock. The research yielded several findings for the target rock samples. NMR was the most appropriate technique for total porosity determination. MICP porosity matched both NMR and imaging results and highlighted the different effects of solvent extraction on throat size distribution. PDP core-plug gas permeability measurements were consistent but overestimated in comparison to PSS results, with the difference reaching two orders of magnitude. SEM proved to be the only feasible method for void-scale imaging with a spatial resolution up to 5 nm. The results confirmed the presence of natural voids of two major types. The first type was organic matter (OM)-hosted pores, with dimensions of less than 500 nm. The second type was sporadic voids in the mineral matrix (biogenic clasts), rarely larger than 250 nm. Comparisons between whole-core and core-plug reservoir properties showed substantial differences in both porosity (by a factor of 2) and permeability (up to 4 orders of magnitude) caused by spatial heterogeneity and scaling.


2020 ◽  
Author(s):  
Victor Nachev ◽  
Andrey Kazak ◽  
Sergey Turuntaev

<p>The hydraulic fracturing (HF) is one of the most commonly used methods for improving oil recovery. Improvement of HF efficiency requires the generation of an extensive network of secondary (non-main) fractures in the reservoir rock. This work aims to study the fracture propagation at the microscale for determining the optimal stress-strain states sustaining the most extensive network of secondary fractures. The solution accounts for rock microstructure at various scales, elastic strength parameters and elastic-plastic type of rock behavior during fracture propagation. The object of investigation is Berezov formation that features low permeability (< 1 mD) and pore dimensions down to tens of nanometers. Microstructural characterization employed computed tomography (CT) before and after geomechanical tests, quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN) and energy dispersive spectroscopy. Geomechanical characterization included multi-stage compressive strength tests, Brazilian tensile strength testing. Data processing included the segmentation of micro-CT data, the 2D-QEMSCAN to 3D- micro-CT registration. For the digital rock model, the preparation we built the mesh, then populated the model with mechanical properties, defined the contact behavior between mineral grains and set boundary conditions. Using an advanced commercial mechanical simulator, we modeled fracture propagation at the microscale, obtained the simulations of fracture initiation and propagation in a 3D-homogeneous porous matrix, 2D stress-strain state of the heterogeneous material with nine minerals and fracture evolution through intergranular contacts. We found the appearance of a plasticity region in the heterogeneous matrix associated with fracture propagation. The research results allow improving the efficiency of HF operations at unconventional reservoirs and increasing production from isolated pore systems by creating an extensive secondary-fracture network.</p>


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1871
Author(s):  
Xinlu Yu ◽  
Yingqian Fu ◽  
Xinlong Dong ◽  
Fenghua Zhou ◽  
Jianguo Ning

The dynamic constitutive behaviors of concrete-like materials are of vital importance for structure designing under impact loading conditions. This study proposes a new method to evaluate the constitutive behaviors of ordinary concrete at high strain rates. The proposed method combines the Lagrangian-inverse analysis method with optical techniques (ultra-high-speed camera and digital image correlation techniques). The proposed method is validated against finite-element simulation. Spalling tests were conducted on concretes where optical techniques were employed to obtain the high-frequency spatial and temporal displacement data. We then obtained stress–strain curves of concrete by applying the proposed method on the results of spalling tests. The results show non-linear constitutive behaviors in these stress–strain curves. These non-linear constitutive behaviors can be possibly explained by local heterogeneity of concrete. The proposed method provides an alternative mean to access the dynamic constitutive behaviors which can help future structure designing of concrete-like materials.


2019 ◽  
Vol 221 ◽  
pp. 01018 ◽  
Author(s):  
Vladimir Zimin ◽  
Alexey Krylov ◽  
Sergey Churilin ◽  
Zikun Zhang

Today large space structures are in focus of attention of engineers and designers of rocket and space equipment. In ground-based experiments, it is not always possible to carry out complex tests of large space structure functionality. Therefore, the development of mathematical models describing properly the transformable structure dynamics when they opened from the densely packed transport state to the operating position in the orbit becomes very important. To determine the stress-strain state of the frame elements when it is unfolding the shape of the framework is taken at the moments when relative velocities of the adjacent sections are maximal. Supposed, that at these moments the frame elements are getting on the stops limiting their relative angular displacements, and the structure behaves as an elastic rod with specified characteristics. Numerical analysis of the stress-strain state in the framework is carried out by means of a finite element model. Therefore, the represented mathematical model can be effectively used to predict the functional suitability of such transformable space structures already on the early stages of their development.


2020 ◽  
pp. 1-17
Author(s):  
W.-c. Xie ◽  
X.-l. Wang ◽  
D.-p. Duan ◽  
J.-w. Tang ◽  
Y. Wei

ABSTRACT Stratospheric airships are promising aircraft, usually designed as a non-rigid airship. As an essential part of the non-rigid airship, the envelope plays a significant role in maintaining its shape and bearing the external force load. Generally, the envelope material of a flexible airship consists of plain-weave fabric, composed of warp and weft fibre yarn. At present, biaxial tensile experiments are the primary method used to study the stress–strain characteristics of such flexible airship materials. In this work, biaxial tensile testing of UN-5100 material was carried out. The strain on the material under unusual stress and the stress ratio were obtained using Digital Image Correlation (DIC) technology. Also, the stress–strain curve was corrected by polynomial fitting. The slope of the stress–strain curve at different points, the Membrane Structures Association of Japan (MSAJ) standard and the Radial Basis Function (RBF) model were compared to identify the stress–strain characteristics of the materials. Some conclusions on the mechanical properties of the flexible airship material can be drawn and will play a significant role in the design of such envelopes.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6474
Author(s):  
Tri Pham ◽  
Ruud Weijermars

The Time-Stepped Linear Superposition Method (TLSM) has been used previously to model and analyze the propagation of multiple competitive hydraulic fractures with constant internal pressure loads. This paper extends the TLSM methodology, by including a time-dependent injection schedule using pressure data from a typical diagnostic fracture injection test (DFIT). In addition, the effect of poro-elasticity in reservoir rocks is accounted for in the TLSM models presented here. The propagation of multiple hydraulic fractures using TLSM-based codes preserves infinite resolution by side-stepping grid refinement. First, the TLSM methodology is briefly outlined, together with the modifications required to account for variable time-dependent pressure and poro-elasticity in reservoir rock. Next, real world DFIT data are used in TLSM to model the propagation of multiple dynamic fractures and study the effect of time-dependent pressure and poro-elasticity on the development of hydraulic fracture networks. TLSM-based codes can quantify and visualize the effects of time-dependent pressure, and poro-elasticity can be effectively analyzed, using DFIT data, supported by dynamic visualizations of the changes in spatial stress concentrations during the fracture propagation process. The results from this study may help develop fracture treatment solutions with improved control of the fracture network created while avoiding the occurrence of fracture hits.


2018 ◽  
Author(s):  
Evgeniy A. Rozhdestvenskiy ◽  
Vladimir V. Kozlov ◽  
Irina S. Korol’ ◽  
Vladimir V. Kuvshinov ◽  
Sergey A. Perevezentsev ◽  
...  

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
M. Turski ◽  
M. C. Smith ◽  
P. J. Bouchard ◽  
L. Edwards ◽  
P. J. Withers

Application of electronic speckle pattern interferometry (ESPI) is described to measure the spatial variation in monotonic tensile stress-strain properties along “cross-weld” specimens machined from a stainless steel three-pass welded plate. The technique, which could also be done with digital image correlation, was applied to quantify how the material 0.2%, 1%, 2%, 5%, 10%, and 20% proof stress varied with distance from the center-line of the weldment for parent and weld material associated with the first and final passes. The stress-strain curves measured by the ESPI method correlated closely with stress-strain data measured using conventional test specimens. The measured results are consistent with the hypothesis that thermo-mechanical cycles associated with the welding process work harden previously deposited (single-pass) weld metal and the surrounding parent material. The stress-strain response of the heat affected zone adjacent to the first weld pass is consistent with an accumulated (equivalent monotonic) plastic strain of 6.5% and that of the first pass weld bead was consistent with an accumulated plastic strain of approximately 4% greater than the state of the final pass weld metal.


Sign in / Sign up

Export Citation Format

Share Document