Participation of pupils in atmospheric measurements -- Potential for increasing climate change risk awareness and data availability for weather and climate research

Author(s):  
Henning Rust ◽  
Bianca Wentzel ◽  
Thomas Kox ◽  
Jonas Lehmke ◽  
Christopher Böttcher ◽  
...  

<p>Voluntarily measuring atmospheric characteristics by citizens has a long tradition. Possibilities has been increasing in the last years with the rise of smart devices and the internet-of-things (IoT). Atmospheric measurements are also prototypical project examples within the Maker community. Maker projects (i.e. IoT-/technology-oriented projects) are popular means of strengthening interest in STEM subjects among pupils. In the frame of two projects, we use an IoT-based weather station to be assembled by pupils as a participatory vehicle to a) raise interest in and understanding of weather and climate, as well as weather forecasts, and b) obtain additional data to be used in scientific projects.  </p><p>In the project KARE-CS  (funding: German Ministry for Education and Research, BMBF), a lay weather network has been set up together with pupils in the Bavarian Oberland south of Munich in 2020 and 2021. The students' devices measure temperature, pressure, humidity, solar radiation and precipitation in their direct environment, data is visualized on their smartphones (or any device running a browser) and updated every few minutes. Pupils also report weather impacts such as observed damages or their own concernment about weather events. These data are evaluated in workshops involving the students, their teachers, local partners and scientists. Atmospheric as well as impact data is evaluated for further use in scientifc studies, such as within the mother project KARE (). KARE-CS focuses on upper secondary school students as participants and aim at a development of competences among teachers as multipliers and pupils, particularly in terms of climate change adaptation, understanding natural hazards and risks and in taking personal precautions.</p><p>A similar setup is used for supporting the measurement campaing FESSTVaL ( initiated for 2021 by the Hans-Ertel-Centre for Weather Research ( ). The pupils' network will consist of 100 instruments within and close to the campaign's main site. Additionally to the communication and education-oriented goals mentioned above, the resulting spatially and temporally high-resolution data is used for research on thunderstorm development and cold pool characteristics within the Hans-Ertel-Centre.</p>

2021 ◽  
Author(s):  
Martin Göber ◽  
Henning Rust ◽  
Thomas Kox ◽  
Bianca Wentzel ◽  
Christopher Böttcher ◽  
...  

<p>Voluntary weather measurements have a long tradition and the opportunities have recently expanded with that the advent of the Internet of Things. Atmospheric measurements are prototypical examples for the maker community and popular means to strengthen interest in STEM subjects. In two projects in Germany  (in Brandenburg, within the FESSTVaL (Field Experiment on submesoscale spatio-temporal variability in Lindenberg) measurement campaign initiated by the Hans-Ertel-Center for Weather Research, and in Bavaria, in the KARE-Citizen Science  project), we use a weather station to be assembled by pupils as a participatory vehicle to increase interest in and understanding of weather and climate, as well as of weather forecasting, and to generate high resolution data for research.</p><p>The devices measure e.g. temperature, humidity, radiation, pressure and precipitation in the students' immediate environment. They can be placed in almost any location, since they operate independent of W-LAN and external power supply. The data is visualized directly via a web app. Students report weather impacts, such as observed damage or their own exposure to weather. Due to the pandemic, only a few dozens pupils were able to participate and building their devices had to be done with digital guidance and video support. Further online materials on understanding weather forecasting and its uncertainty were provided.</p><p>Understanding of weather risks was surveyed before and after participation to detect any changes. Students were asked questions about thunderstorm, rain and heat events and climatic changes since 1880. The results show a good understanding of weather risks compared to a population of all ages representative study. In online workshops pupils together with the scientists scetched and discussed the influence of the placement of their stations on their measurements. Interesting meteorological phenomena were discovered in the dataset, e.g. a cold pool that can form during a thunderstorm and trigger new ones. Thus, our network of higher spatial and temporal resolution data collected by the pupils has the potential to study these small-scale phenomena in more detail than with professional networks of about 25 km spacing.</p>


2020 ◽  
Author(s):  
Simon Treu ◽  
Matthias Mengel ◽  
Katja Frieler

<p>Sea level rise increases extreme water levels and thus the flood losses from storm surge events. While it is still difficult to estimate the influence of climate change on single storms, the influence of anthropogenic climate change on sea level rise is evident. We here aim to quantify the fraction of damages caused by sea level rise for a set of flood events of the last decade. Flood-extents and the spatial distribution of damages are reconstructed from openly available data-sources. We construct counterfactual flood extents for each event by a counterfactual sea level as it would have been in a world without climate change. As we are particularly interested in losses in poorer countries that often lack high resolution data such as LiDAR based elevation maps or tide-gauge records, our methodology is transferable between regions, building on global and open data. Depending on the study site, we detect a difference between observed and counterfactual damages though uncertainties remain high. Data availability and data detail remain a major restriction.</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 504e-504
Author(s):  
Erika Szendrak ◽  
Paul E. Read ◽  
Jon S. Miller

Modern aspects of many subjects (e.g., computer science and some aspects of medical science) are now taught in many high schools, but the plant sciences are often given short shrift. A collaboration was therefore established with a high school biology program in which pilot workshops could be developed to enable advanced students to gain insights into modern plant science techniques. A successful example is the workshop on plant biotechnology presented in this report. This workshop is simple and flexible, taking into account that most high school biology laboratories and classrooms are not set up for sophisticated plant science/biotechnology projects. It is suitable for from 10 to 30 students, depending upon space and facilities available. Students work in pairs or trios, and learn simple disinfestation and transfer techniques for micropropagation and potential subsequent transformation treatments. Students gain insights into: sterile technique and hygiene; plant hormones and their physiological effects; plant cell, tissue and organ culture; the influence of environmental factors on response of cells and tissues cultured in vitro; and an understanding of the phenomenon of organogenesis and resulting plant growth and development. This workshop has been tested on several classes of students and following analysis, several refinements were included in subsequent iterations. Results of the students' experiments have been positive and instructive, with student learning outcomes above expectations. Further details of the workshop techniques and approach will be presented.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4286 ◽  
Author(s):  
Samiksha S. V. ◽  
P. Vethamony ◽  
Prasad K. Bhaskaran ◽  
P. Pednekar ◽  
M. Jishad ◽  
...  

Coastal regions of India are prone to sea level rise, cyclones, storm surges, and human-induced activities, resulting in flood, erosion, and inundation, and some of these impacts could be attributed to climate change. Mangroves play a very protective role against some of these coastal hazards. The primary aim of the study was to estimate wave energy attenuation by mangrove vegetation using modeling, and to validate the model results with measurements conducted off Mumbai coast, where a mangrove forest is present. Wave measurements were carried out from 5–8 August 2015 at three locations in a transect normal to the coast using surface-mounted pressure-level sensors in spring tide conditions. The measured data presented wave height attenuation of the order of 52%. Model set-up and sensitivity analyses were conducted to understand the model performance with respect to vegetation parameters. It was observed that wave attenuation increases with an increase in drag coefficient, vegetation density, and stem diameter. For a typical set-up in the Mumbai coastal region having a vegetation density of 0.175 per m2, stem diameter of 0.3 m, and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation ranging from 49% to 55%, which matches reasonably well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. This study also highlights the importance of climate change and mangrove vegetation.


Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 9-25 ◽  
Author(s):  
Bharat R. Sharma ◽  
Devaraj de Condappa

The topography of the Ganges basin is highly variable, with the steep mountainous region of the Himalaya upstream and the large fertile plains in eastern India and Bangladesh downstream. The contribution from the glaciers to streamflows is supposed to be significant but there is uncertainty surrounding the impact of climate change on glaciers. An application of the Water Evaluation and Planning model was set up which contained an experimental glaciers module. The model also examined the possible impacts of an increase in temperature. The contribution from glaciated areas is significant (60–75%) in the Upper Ganges but reduces downstream, falling to about 19% at Farakka. Climate change-induced rise in temperature logically increases the quantity of snow and ice that melts in glaciated areas. However, this impact decreases from upstream (+8% to +26% at Tehri dam) to downstream (+1% to +4% at Farakka). Such increases in streamflows may create flood events more frequently, or of higher magnitude, in the upper reaches. Potential strategies to exploit this additional water may include the construction of new dams/reservoir storage and the development of groundwater in the basin through managed aquifer recharge. The riparian states of India, Nepal and Bangladesh could harness this opportunity to alleviate physical water scarcity and improve productivity.


Author(s):  
Sona Ahuja ◽  
Diksha Yadav

The present study provides a description of the model of interactive digital pedagogy for remote areas and its impact on pedagogical satisfaction and academic achievement of students. This pedagogical intervention was designed to enrich and supplement the teaching-learning experience in remote and underprivileged schools through the use of technology. An interactive online teaching-learning system was set-up using a digital pedagogy. 150 school students and 80 prospective teachers from three higher secondary schools of Madhya Pradesh and Tamil Nadu participated in the study. Pedagogical satisfaction and academic achievement of the school students who studied in this set-up were examined. The results revealed that active learning, technological competence and learner autonomy were enhanced in an online environment when compared to an offline environment.


Sign in / Sign up

Export Citation Format

Share Document