Searching for weather in varves: use of ultra-high-resolution scanning techniques to reconstruct seasonal meteorological conditions

Author(s):  
Paul Zander ◽  
Maurycy Żarczyński ◽  
Wojciech Tylmann ◽  
Shauna-kay Rainford ◽  
Martin Grosjean

<p>Varved lake sediments are recognized as valuable archives of paleoclimatic information due to their precise chronological control. However, paleoclimate reconstructions based on the composition of biochemical varves are relatively rare (Zolitschka et al., 2015). We applied novel high-resolution scanning techniques to the varved sediments of Lake Żabińskie, Poland to obtain spatially resolved geochemical data at a resolution of 60 μm covering the period 1966-2019. Relative abundances of elements were measured in resin-embedded sediment slabs using a Bruker M4 Tornado micro-XRF scanner. Chloropigments-<em>a</em> and bacteriopheopigments-<em>a</em> were measured on a wet sediment core using a Specim Hyperspectral core scanner (Butz et al., 2015). The high resolution of the scanning data, and the relatively thick well-preserved varves (average thickness = 6.4 mm), enables a close examination of seasonal scale sediment composition and varve formation processes. Time series of geochemical variables within each varve year were classified into 4 varve type groups based on the dissimilarity measure ψ for multivariate time series (Benito and Birks, 2020; Gordon and Birks, 1974). Based on a Multivariate Analysis Of Variance test, these groups of years experienced significant (p<0.05) differences in seasonal meteorological conditions, particularly wind speed and temperature.  Additionally, a correlation analysis on mean annual geochemical values from the aforementioned scanning techniques and conventional CNS analysis, and seasonal meteorological data revealed significant (p<0.05) correlations with windiness and temperature. Based on these relationships, we applied generalized additive models to predict spring and summer (MAMJJA) temperature and number of windy days (spring through fall), yielding models with significant predictive power. Based on model selection, the variables with the most predictive power for spring and summer temperature were Ti (negative correlation) and total C. The variables with the most predictive power for windiness were Si, sediment accumulation rate, and varve type. This study highlights the usefulness of high-resolution scanning techniques to improve our understanding of varve formation processes and relationships between varve composition and climate variables in biochemical varves.</p><p> </p><p><strong>References</strong></p><p>Benito, B. M. and Birks, H. J. B.: distantia: an open‐source toolset to quantify dissimilarity between multivariate ecological time‐series, Ecography (Cop.)., 43(5), 660–667, doi:10.1111/ecog.04895, 2020.</p><p>Butz, C., Grosjean, M., Fischer, D., Wunderle, S., Tylmann, W. and Rein, B.: Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments, J. Appl. Remote Sens., 9(1), 096031, doi:10.1117/1.jrs.9.096031, 2015.</p><p>Gordon, A. D. and Birks, H. J. B.: Numerical methods in Quaternary palaeoecology: II. Comparison of pollen diagrams, New Phytol., 73(1), 221–249, doi:10.1111/j.1469-8137.1974.tb04621.x, 1974.</p><p>Zolitschka, B., Francus, P., Ojala, A. E. K. and Schimmelmann, A.: Varves in lake sediments - a review, Quat. Sci. Rev., 117, 1–41, doi:10.1016/j.quascirev.2015.03.019, 2015.</p>

2021 ◽  
Vol 17 (5) ◽  
pp. 2055-2071
Author(s):  
Paul D. Zander ◽  
Maurycy Żarczyński ◽  
Wojciech Tylmann ◽  
Shauna-kay Rainford ◽  
Martin Grosjean

Abstract. Varved lake sediments are exceptional archives of paleoclimatic information due to their precise chronological control and annual resolution. However, quantitative paleoclimate reconstructions based on the biogeochemical composition of biochemical varves are extremely rare, mainly because the climate–proxy relationships are complex and obtaining biogeochemical proxy data at very high (annual) resolution is difficult. Recent developments in high-resolution hyperspectral imaging (HSI) of sedimentary pigment biomarkers combined with micro X-ray fluorescence (µXRF) elemental mapping make it possible to measure the structure and composition of varves at unprecedented resolution. This provides opportunities to explore seasonal climate signals preserved in biochemical varves and, thus, assess the potential for annual-resolution climate reconstruction from biochemical varves. Here, we present a geochemical dataset including HSI-inferred sedimentary pigments and µXRF-inferred elements at very high spatial resolution (60 µm, i.e. > 100 data points per varve year) in varved sediments of Lake Żabińskie, Poland, over the period 1966–2019 CE. We compare these data with local meteorological observations to explore and quantify how changing seasonal meteorological conditions influenced sediment composition and varve formation processes. Based on the dissimilarity of within-varve multivariate geochemical time series, we classified varves into four types. Multivariate analysis of variance shows that these four varve types were formed in years with significantly different seasonal meteorological conditions. Generalized additive models (GAMs) were used to infer seasonal climate conditions based on sedimentary variables. Spring and summer (MAMJJA) temperatures were predicted using Ti and total C (Radj2=0.55; cross-validated root mean square error (CV-RMSE) = 0.7 ∘C, 14.4 %). Windy days from March to December (mean daily wind speed > 7 m s−1) were predicted using mass accumulation rate (MAR) and Si (Radj2=0.48; CV-RMSE = 19.0 %). This study demonstrates that high-resolution scanning techniques are promising tools to improve our understanding of varve formation processes and climate–proxy relationships in biochemical varves. This knowledge is the basis for quantitative high-resolution paleoclimate reconstructions, and here we provide examples of calibration and validation of annual-resolution seasonal weather inference from varve biogeochemical data.


2021 ◽  
Author(s):  
Paul D. Zander ◽  
Maurycy Żarczyński ◽  
Wojciech Tylmann ◽  
Shauna-kay Rainford ◽  
Martin Grosjean

Abstract. Varved lake sediments are exceptional archives of paleoclimatic information due to their precise chronological control and annual resolution. However, quantitative paleoclimate reconstructions based on the biogeochemical composition of biochemical varves are extremely rare mainly because the climate-proxy relationships are complex, and obtaining biogeochemical proxy data at very high (annual) resolution is difficult. Recent developments in high-resolution hyperspectral imaging (HSI) of sedimentary pigment biomarkers combined with micro X-ray fluorescence (μXRF) elemental mapping make it possible to measure the structure and composition of varves at unprecedented resolution. This provides opportunities to explore (seasonal) climate signals preserved in biochemical varves and, thus, assess the potential for annual resolution climate reconstruction from biochemical varves. Here, we present a geochemical dataset including HSI-inferred sedimentary pigments and uXRF-inferred elements at very high spatial resolution (60 μm, i.e. > 100 data points per varve year) in varved sediments of Lake Żabińskie, Poland over the period 1966–2019 CE. We compare this data with local meteorological observations to explore and quantify how changing seasonal meteorological conditions influenced sediment composition and varve formation processes. Based on the dissimilarity of within-varve multivariate geochemical time series, we classified varves into four types. Multivariate analysis of variance shows that these four varve types were formed in years with significantly different seasonal meteorological conditions. Generalized additive models (GAMs) were used to infer seasonal climate conditions based on sedimentary variables. Spring and summer (MAMJJA) temperature were predicted using Ti and total C (R2adj = 0.55; cross-validated root mean square error (CV-RMSE) = 0.7 °C, 14.4%). Windy days from March to December (mean daily wind speed > 7 m/s) were predicted using mass accumulation rate (MAR) and Si (R2adj = 0.48; CV-RMSE = 19.0%). This study demonstrates that high-resolution scanning techniques are promising tools to improve our understanding of varve formation processes and climate-proxy relationships in biochemical varves. This knowledge is the basis for quantitative high-resolution paleoclimate reconstructions, and here we provide examples of calibration and validation of annual resolution seasonal weather inference from varve biogeochemical data.


2021 ◽  
Author(s):  
Paola Gravina ◽  
Beatrice Moroni ◽  
Riccardo Vivani ◽  
Alessandro Ludovisi ◽  
Roberta Selvaggi ◽  
...  

<p>Shallow and closed lakes are affected by meteorological and climate variations and are especially sensitive to the change in their hydrological balance. In central Italy, there is the fourth-largest lake of the country, the Trasimeno Lake, whose water level has undergone various fluctuations over the centuries with alternation of flood and drought periods because of its shallow depth and the absence of natural outflows [1].</p><p>Sediment archives are used as information records to study chemical, physical, and biological environmental variations and changes in the hydrological budget driven by climatic fluctuations, but this is particularly complicated in shallow lakes due to the multiple perturbative phenomena. A robust study depends on the ability to obtain valid high-resolution geochemical data from lake sediments.</p><p>We conducted high-resolution geochemical analysis on three sediment cores about 1 meter long each, collected in Lake Trasimeno. We sectioned at 1  or 2 cm interval, which provided a detailed characterization of the significant changes in lacustrine processes that occurred in the basin during the Anthropocene (~last 150 years) [2], combining quantitative chemical (ICP-OES) and semi-quantitative (XRD and SEM) investigations. Geochemical variables are used as paleolimnological proxies to reconstruct past lake events that occurred within the water column. In particular, we report the study of the endogenic precipitates characteristic of the Trasimeno sediments, whose precipitation processes have been influenced by water fluctuations and anthropogenic impacts.</p><p>Given the strong presence of water fluctuations, the investigation period was divided into three distinct phases related to the lake's hydrometric state and characterized by sedimentary compounds of different nature. The endogenic carbonate compounds of calcite (commonly present in the Trasimeno sediments) contain a different Mg percentage during the different hydrometric phases. The lake sediments are particularly rich in Mg-calcite due to both water level changes and biological effects. Moreover, co-precipitation of non-crystalline Ca-P compounds (e.g., apatite type) has been detected during a hydrometric phase characterized by high microorganisms activity. Precipitation processes were triggered in Trasimeno by the growth of nutrient discharge into the lake (since the 1970s) and are currently studied for their importance in controlling eutrophication phenomena.</p><p>In conclusion, our findings show that rapid lake responses to water fluctuations and climate variations were transcribed within the sedimentary stratigraphic archives, which underlines their value and high quality in paleoenvironmental and paleohydrological reconstruction.</p><p>References:</p><p>[1] Frondini, Dragoni, Morgantini, Donnini, Cardellini, Caliro, Melillo, and Chiodini (2019). An En-dorheic Lake in a Changing Climate: Geochemical Investigations at Lake Trasimeno (Italy).Water, 11(7):1319.</p><p> [2] Gaino, E., Scoccia, F., Piersanti, S., Rebora, M., Bellucci, L. G., and Ludovisi, A. (2012). Spiculerecords of Ephydatia fluviatilis as a proxy for hydrological and environmental changes inthe shallow Lake Trasimeno (Umbria, Italy). Hydrobiologia, 679(1):139–153.</p>


2017 ◽  
Vol 17 (3) ◽  
pp. 159-166 ◽  
Author(s):  
Wojciech Tylmann ◽  
Paulina Głowacka ◽  
Agnieszka Szczerba

AbstractLake sediments are excellent archives of environmental and climate change. Especially important are varved sediments which can provide high-resolution (annual) records of those changes. Process studies including limnological measurements, particle flux monitoring and analyses of sediment structures give an opportunity to explain relationships between meteorological conditions, in-lake processes and varve formation. In our study, three lakes were selected in the Masurian Lakeland: Lake Żabińskie, Łazduny and Rzęśniki. These relatively small and deep lakes contain well preserved biogenic varves. The lakes are influenced by the same meteorological conditions but differ in terms of their catchment size, land use, hydrology, lake basin morphology and trophic status. To explore the relationships between different parameters and preservation/transformation of climate signals in the sediments we started systematic limnological measurements in the water column of these lakes, water sampling for hydrochemical analyses, monitoring of modern sedimentation using sediment traps and analysis of topmost varves from short sediment cores. With this comprehensive and high-resolution monitoring program scheduled for at least four years we are going to verify the potential of varves to track short-term meteorological phenomena in lake sediments.


2018 ◽  
Vol 12 (12) ◽  
pp. 321-326 ◽  
Author(s):  
Payman Majd ◽  
Navid Madershahian ◽  
Anton Sabashnikov ◽  
Carolyn Weber ◽  
Wael Ahmad ◽  
...  

Background: There is still much controversy about whether meteorological conditions influence the occurrence of acute aortic dissection (AAD). The aim of the present study was to investigate the possible correlation between atmospheric pressure, temperature, lunar cycle and the event of aortic dissection in our patient population. Methods: The clinical data for 348 patients with AAD (73% type Stanford A) were confronted with the meteorological data provided by the Cologne weather station over the same period. Results: There were no statistically significant differences between meteorological parameters on days of AAD events compared with control days. A logistic regression model showed that air pressure (odds ratio [OR] 1.004, 95% confidence interval [CI] 0.991–1.017, p = 0.542), air temperature (OR 0.978, 95% CI 0.949–1.008, p = 0.145), season ( p = 0.918) and month of the event ( p = 0.175) as well as presence of full moon (OR 1.579, 95% CI 0.763–3.270, p = 0.219) were not able to predict AAD events. Also, no predictive power of meteorological data and season was found on analysing their impact on different types of AAD events. Conclusions: Our study did not reveal any dependence of atmospheric pressure, air temperature or the presence of full moon on the incidence of different types of AAD.


2001 ◽  
Vol 13 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Alison J. McMorrow ◽  
Mark A.J. Curran ◽  
Tas D. Van Ommen ◽  
Vin Morgan ◽  
Michael J. Pook ◽  
...  

High resolution firn core records of the oxygen isotope ratio (δ18O) and trace chemical species were extracted from a high accumulation site on Law Dome, East Antarctica. Inter-core comparisons were conducted and regional events identified in cores 5 km apart. High resolution dating of one of the firn cores was established using a co-located Automatic Weather Station (AWS) equipped with a snow accumulation sensor, allowing dating of individual precipitation events in the firn core record. Variations in the δ18O and trace chemical records were compared with meteorological conditions at the mesoscale and the synoptic-scale. Particular focus was given to an abrupt change in sea salt concentrations and δ18O within a depth range that appears from AWS accumulation data to have been deposited over a 24 hour period. The abrupt change in the firn core record was found to be consistent with an abrupt change in meteorological conditions. Direct comparisons between high resolution firn core records and meteorological conditions will greatly facilitate the interpretation of signals preserved in deep ice cores.


2021 ◽  
Vol 19 (2) ◽  
pp. 92-101
Author(s):  
N. A. Radeev

The occurrence of snow avalanches is mainly influenced by meteorological conditions and the configuration of snow cover layers. Machine learning methods have predictive power and are capable of predicting new events. From the trained machine learning models, an ensemble is obtained that predicts the possibility of avalanches. The model obtained in the article uses avalanche data, meteorological data and generated data on the state of snow cover for training. This allows the resulting solution to be used in more mountainous areas than solutions using a wider range of less available data.Snow data is generated by the SNOWPACK software package.


Sign in / Sign up

Export Citation Format

Share Document