Analyzing 67P’s dusty coma

Author(s):  
Nora Hänni ◽  
Kathrin Altwegg ◽  
Daniel Müller ◽  
Boris Pestoni ◽  
Martin Rubin ◽  
...  

<p>While the volatile species in comet 67P/Churyumov-Gerasimenko’s coma have been analyzed in great spatial and temporal detail, e.g., Rubin et al. (2019) or Läuter et al. (2020), little is so far known about the less volatile, heavier species. There is growing evidence, however, that less volatile species, such as salts, may play a key role in explaining some of the puzzling properties of comets, as for instance shown by Altwegg et al. (2020). These authors also have demonstrated the unique capability of ROSINA/DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/ Double Focusing Mass Spectrometer; Balsiger et al. (2007)) to detect exactly such little volatile species in-situ, namely during a dust event on 5 September 2016 (when a dust grain entered the instrument and sublimated inside).</p><p>Complementary information on 67P’s dusty coma can be obtained from data collected during time periods of high dust activity. A clear advantage of such data is they also allow for a quantitative interpretation thanks to the much more stable measurement conditions. Moreover, a comparison to data collected during a time period of little dust activity (e.g., to the days around end of May 2015 as in Rubin et al. 2019) also allows to link species to dust.</p><p>End of July / beginning of August 2015, the comet was approaching its perihelion and ejecting a lot of dust, as seen by the OSIRIS camera (Vincent et al. 2016). The data from this period are therefore a promising starting point for the search of heavier species (m > 100 Da). Altwegg et al. (2019), for instance, reported on the tentative identifications of the simplest polyaromatic hydrocarbon species naphthalene as well as of benzoic acid, the simplest aromatic carboxylic acid. To confirm these identifications and to achieve a more complete inventory of heavier and chemically more complex species, we are now analyzing these data sets strategically. In our contribution we will share what we have learned from pushing the exploration of 67P’s dusty coma.</p><p> </p><p>Altwegg et al., 2020, Nat. Astron., 4, 533-540.<br>Altwegg et al., 2019, Annu. Rev. Astron. Astrophys., 57, 113-55.<br>Balsiger H. et al., 2007, Space Sci. Rev., 128, 745-801.<br>Läuter et al., 2020, MNRAS, 498, 3, 3995-4004.<br>Rubin et al., 2019, MNRAS, 489, 594-607. Vincent et al., 2016, MNRAS, 462 (Suppl_1), 184-194.</p>

2019 ◽  
Vol 489 (4) ◽  
pp. 4734-4740 ◽  
Author(s):  
Isaac R H G Schroeder ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Michael R Combi ◽  
...  

ABSTRACT The nucleus of the Jupiter-family comet 67P/Churyumov–Gerasimenko was discovered to be bi-lobate in shape when the European Space Agency spacecraft Rosetta first approached it in 2014 July. The bi-lobate structure of the cometary nucleus has led to much discussion regarding the possible manner of its formation and on how the composition of each lobe might compare with that of the other. During its two-year-long mission from 2014 to 2016, Rosetta remained in close proximity to 67P/Churyumov–Gerasimenko, studying its coma and nucleus in situ. Based on lobe-specific measurements of HDO and H2O performed with the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta, the deuterium-to-hydrogen (D/H) ratios in water from the two lobes can be compared. No appreciable difference was observed, suggesting that both lobes formed in the same region and are homogeneous in their D/H ratios.


2020 ◽  
Vol 498 (3) ◽  
pp. 3995-4004 ◽  
Author(s):  
Matthias Läuter ◽  
Tobias Kramer ◽  
Martin Rubin ◽  
Kathrin Altwegg

ABSTRACT The coma of comet 67P/Churyumov–Gerasimenko has been probed by the Rosetta spacecraft and shows a variety of different molecules. The ROSINA COmet Pressure Sensor and the Double Focusing Mass Spectrometer provide in situ densities for many volatile compounds including the 14 gas species H2O, CO2, CO, H2S, O2, C2H6, CH3OH, H2CO, CH4, NH3, HCN, C2H5OH, OCS, and CS2. We fit the observed densities during the entire comet mission between 2014 August and 2016 September to an inverse coma model. We retrieve surface emissions on a cometary shape with 3996 triangular elements for 50 separated time intervals. For each gas, we derive systematic error bounds and report the temporal evolution of the production, peak production, and the time-integrated total production. We discuss the production for the two lobes of the nucleus and for the Northern and Southern hemispheres. Moreover, we provide a comparison of the gas production with the seasonal illumination.


2017 ◽  
Vol 13 (S332) ◽  
pp. 196-201
Author(s):  
Maria Nikolayevna Drozdovskaya ◽  
Ewine F. van Dishoeck ◽  
Martin Rubin ◽  
Jes Kristian Jørgensen ◽  
Kathrin Altwegg

AbstractThe chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system that is thought to be analogous to our own is the low-mass IRAS 16293-2422. ALMA-PILS observations have made the study of chemistry on the disk scales (<100 AU) of this system possible. Under the assumption that comets are pristine tracers of the outer parts of the innate protosolar disk, it is possible to compare the composition of our infant Solar System to that of IRAS 16293-2422. The Rosetta mission has yielded a wealth of unique in situ measurements on comet 67P/C-G, making it the best probe to date. Herein, the initial comparisons in terms of the chemical composition and isotopic ratios are summarized. Much work is still to be carried out in the future as the analysis of both of these data sets is still ongoing.


2019 ◽  
Vol 630 ◽  
pp. A29 ◽  
Author(s):  
Isaac R. H. G. Schroeder I ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Johan De Keyser ◽  
...  

The European Space Agency spacecraft Rosetta accompanied the Jupiter-family comet 67P/Churyumov-Gerasimenko for over 2 yr along its trajectory through the inner solar system. Between 2014 and 2016, it performed almost continuous in situ measurements of the comet’s gaseous atmosphere in close proximity to its nucleus. In this study, the 16O/18O ratio of H2O in the coma of 67P/Churyumov-Gerasimenko, as measured by the ROSINA DFMS mass spectrometer onboard Rosetta, was determined from the ratio of H216O/H218O and 16OH/18OH. The value of 445 ± 35 represents an ~11% enrichment of 18O compared with the terrestrial ratio of 498.7 ± 0.1. This cometary value is consistent with the comet containing primordial water, in accordance with leading self-shielding models. These models predict primordial water to be between 5 and 20% enriched in heavier oxygen isotopes compared to terrestrial water.


2018 ◽  
Vol 618 ◽  
pp. A77 ◽  
Author(s):  
K. L. Heritier ◽  
M. Galand ◽  
P. Henri ◽  
F. L. Johansson ◽  
A. Beth ◽  
...  

Context.The Rosetta spacecraft provided us with a unique opportunity to study comet 67P/Churyumov–Gerasimenko (67P) from a close perspective and over a 2-yr time period. Comet 67P is a weakly active comet. It was therefore unexpected to find an active and dynamic ionosphere where the cometary ions were largely dominant over the solar wind ions, even at large heliocentric distances.Aims.Our goal is to understand the different drivers of the cometary ionosphere and assess their variability over time and over the different conditions encountered by the comet during the Rosetta mission.Methods.We used a multi-instrument data-based ionospheric model to compute the total ion number density at the position of Rosetta. In-situ measurements from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the Rosetta Plasma Consortium (RPC)–Ion and Electron Sensor (IES), together with the RPC–LAngmuir Probe instrument (LAP) were used to compute the local ion total number density. The results are compared to the electron densities measured by RPC–Mutual Impedance Probe (MIP) and RPC–LAP.Results.We were able to disentangle the physical processes responsible for the formation of the cometary ions throughout the 2-yr escort phase and we evaluated their respective magnitudes. The main processes are photo-ionization and electron-impact ionization. The latter is a significant source of ionization at large heliocentric distance (>2 au) and was predominant during the last 4 months of the mission. The ionosphere was occasionally subject to singular solar events, temporarily increasing the ambient energetic electron population. Solar photons were the main ionizer near perihelion at 1.3 au from the Sun, during summer 2015.


2020 ◽  
Author(s):  
Nora Hänni ◽  
Kathrin Altwegg ◽  
Boris Pestoni ◽  
Martin Rubin ◽  
Isaac Schroeder ◽  
...  

&lt;p&gt;For a long time it was thought that the cyano (CN) radical, observed remotely many times in various stellar and interstellar environments, is exclusively a photodissociation product of hydrogen cyanide (HCN). Bockel&amp;#233;e-Morvan et al. (1984) first questioned this notion based on remote observations of comet IRAS-Araki-Alcock. They reported an upper limit for the HCN production rate which was smaller than the CN production rate previously derived by A&amp;#8217;Hearn et al. (1983). Even today, this discrepancy observed for some comets is not resolved although many alternative parents have been suggested. Among the volatile candidates, cyanogen (NCCN), cyanoacetylene (HC&lt;sub&gt;3&lt;/sub&gt;N) and acetonitrile (CH&lt;sub&gt;3&lt;/sub&gt;CN), according to Fray et al. (2005), are the most promising ones. While cyanoacetylene and acetonitrile are known to be present in trace amounts in comets, as reported for comet Hale-Bopp by Bockel&amp;#233;e-Morvan et al. (2000) and for comet 67P/Churyumov-Gerasimenko by Le Roy et al. (2015) and Rubin et al. (2019), the abundance of cyanogen in comets is unknown. Altwegg et al. (2019) were the first to mention its detection in the inner coma of comet 67P/Churyumov-Gerasimenko, target of ESA&amp;#8217;s Rosetta mission.&lt;/p&gt; &lt;p&gt;In this work, we track the signatures of cyanogen in the ROSINA/DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/ Double Focusing Mass Spectrometer; Balsiger et al. (2007)) data, collected during the Rosetta mission phase. We derive abundances relative to water for three distinct periods, indicating that cyanogen is not abundant enough to explain the CN production in comet 67P together with HCN. Our findings are consistent with the non-detection of cyanogen in the interstellar medium.&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;p&gt;A&amp;#8217;Hearn M.F., Millis R.L., 1983, IAU Circ., 3802&lt;/p&gt; &lt;p&gt;Altwegg K., Balsiger H., Fuselier S.A., 2019, Annu. Rev. Astron. Astrophys., 57, 113&amp;#8211;55&lt;/p&gt; &lt;p&gt;Balsiger H. et al., 2007, Space Science Reviews, 128, 745-801&lt;/p&gt; &lt;p&gt;Bockel&amp;#233;e-Morvan D., Crovisier J., Baudry A., Despois D., Perault M., Irvine W.M., Schloerb F.P., Swade D., 1984, Astron. Astrophys., 141, 411-418&lt;/p&gt; &lt;p&gt;Bockel&amp;#233;e-Morvan et al., 2000, Astron. Astrophys., 353, 1101&amp;#8211;1114.&lt;/p&gt; &lt;p&gt;Fray N., B&amp;#233;nilan Y., Cottin H., Gazeau M.-C., Crovisier J., 2005, Planetary and Space Science, 53, 1243-1262&lt;/p&gt; &lt;p&gt;Le Roy L. et al., 2015, Astron. Astrophys., 583, A1&lt;/p&gt; &lt;p&gt;Rubin M. et al., 2019, MNRAS, 489, 594-607&lt;/p&gt;


2020 ◽  
Vol 498 (2) ◽  
pp. 2239-2248
Author(s):  
Nora Hänni ◽  
Kathrin Altwegg ◽  
Boris Pestoni ◽  
Martin Rubin ◽  
Isaac Schroeder ◽  
...  

ABSTRACT Although the debate regarding the origin of the cyano (CN) radical in comets has been ongoing for many decades, it has yielded no definitive answer to date. CN could previously only be studied remotely, strongly hampering efforts to constrain its origin because of very limited spatial information. Thanks to the European Space Agency's Rosetta spacecraft, which orbited comet 67P/Churyumov–Gerasimenko for 2 yr, we can investigate, for the first time, CN around a comet at high spatial and temporal resolution. On board Rosetta's orbiter module, the high-resolution double-focusing mass spectrometer DFMS, part of the ROSINA instrument suite, analysed the neutral volatiles (including HCN and the CN radical) in the inner coma of the comet throughout that whole 2-yr phase and at variable cometocentric distances. From a thorough analysis of the full-mission data, the abundance of CN radicals in the cometary coma has been derived. Data from a close flyby event in 2015 February indicate a distributed origin for the CN radical in comet 67P/Churyumov–Gerasimenko.


2018 ◽  
Vol 620 ◽  
pp. A46 ◽  
Author(s):  
B. Müller ◽  
B. M. Giuliano ◽  
L. Bizzocchi ◽  
A. I. Vasyunin ◽  
P. Caselli

Aims. In this paper we investigate the detectability of the molecular oxygen in icy dust grain mantles towards astronomical objects. Methods. We present a systematic set of experiments with O2−H2O ice mixtures designed to disentangle how the molecular ratio affects the O2 signature in the mid- and near-infrared spectral regions. All the experiments were conducted in a closed-cycle helium cryostat coupled to a Fourier transform infrared spectrometer. The ice mixtures comprise varying thicknesses from 8 × 10−3 to 3 μm. The absorption spectra of the O2−H2O mixtures are also compared to the one of pure water. In addition, the possibility to detect the O2 in icy bodies and in the interstellar medium is discussed. Results. We are able to see the O2 feature at 1551 cm−1 even for the most diluted mixture of H2O:O2 = 9:1, comparable to a ratio of O2/H2O = 10% which has already been detected in situ in the coma of the comet 67P/Churyumov-Gerasimenko. We provide an estimate for the detection of O2 with the future mission of the James Webb Space Telescope (JWST).


2021 ◽  
Author(s):  
Frederik Dhooghe ◽  
Johan De Keyser ◽  
Kathrin Altwegg ◽  
Gaël Cessateur ◽  
Emmanuel Jehin ◽  
...  

&lt;p&gt;Using data from Rosetta/ROSINA&amp;#8217;s Double Focusing Mass Spectrometer (DFMS), a zoo of neutral molecules have been discovered in the coma of 67P/Churyumov-Gerasimenko, which led to a wealth of new insights regarding the comet itself, its formation and the early history of our Solar System.&lt;/p&gt; &lt;p&gt;A comprehensive understanding of the overall comet composition requires information on all species involved i.e. the volatiles, semi-volatiles and refractories in the coma. However, while ROSINA targets volatiles and GIADA, MIDAS and COSIMA studied refractories, no instrument on Rosetta provides measurements specifically of semi-volatiles. In some circumstances, ROSINA/DFMS may provide at least some information on semi-volatiles in the coma. As semi-volatile species are progressively released from the grains into the gas coma (their release depends on cometocentric distance and grain size), they can be identified if the abundance ratio of a candidate semi-volatile species (or a fragment thereof) to a volatile species increases as a function of distance from the nucleus. This constitutes a so-called distributed source in the coma.&lt;/p&gt; &lt;p&gt;With a mass spectrometer like DFMS, one does not detect neutral coma species, but rather the ionized products thereof after electron impact ionization. A major difficulty is assigning the observed ions to parent neutrals. As semi-volatile species have a low abundance, sum spectra obtained through accumulation of individual DFMS spectra can improve the signal-to-noise ratio in order to provide decisive information for identification. Accurate sum spectra can only be obtained provided all instrument-dependent effects are accounted for.&lt;/p&gt; &lt;p&gt;This contribution focuses on the procedure used to create sum spectra and presents some typical results.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document