High-temperature three-axis IRM Lowrie test

Author(s):  
Leonid Surovitskii ◽  
Andrei Kosterov ◽  
Mary Kovacheva ◽  
Maria Kostadinova-Avramova ◽  
Natalya Salnaya ◽  
...  

<p>The three-axis isothermal remanent magnetization (IRM) test (the Lowrie test; Lowrie, 1990, Geophys. Res. Lett., 17, 159-162) is a useful tool to identify ferromagnetic minerals by their coercivity and unblocking temperature spectra. In this study, we explore a variant of the Lowrie test in which measurements are conducted directly at elevated temperatures, and compare its performance with the results of the conventional stepwise procedure. IRM acquisition fields applied along three orthogonal axes were 1 T, 200 mT and 40 mT, respectively. The field value for the soft component was chosen so as to include ca. 90% of its coercivity spectrum. For the hard component the maximum available field was used. The test is applied to characterize the magnetic mineralogy of archaeological baked clays and bricks from Bulgaria and Russia. Bulgarian samples are baked clays from various Neolithic (5700-5300 BCE) archaeological sites and several bricks of the Roman epoch (III-IV c. AD). Samples from Russia are bricks originating from several regions with ages from XIII to early XIX c. AD.</p><p>The low- and intermediate-coercivity components of IRM in the studied samples are typically demagnetized by 520-550°C, compatible with substituted or cation-deficient magnetite or, possibly, maghemite. This is supported by the absence of the Verwey transition in studied samples (Kosterov et al., 2021, Geophys. J. Int., 224(2), 1256-1271). The high-coercivity component appears to be carried by two mineral phases with very distinct unblocking temperatures, 120-200°C and 500 to 640°C. The first phase is similar to the high coercivity, low unblocking temperature (HCSLT) phase described by McIntosh et al., 2007 (Geophys. Res. Lett., 34, L21302, doi: 10.1029/22007GL031168), and the second one appears to be hematite with variable degree of substitution.</p><p>Performance of the high-temperature variant of the Lowrie test compares favorably with the classical procedure, while the former is also significantly faster and yields a superior temperature resolution.</p><p>This study is supported by Russian Foundation of the Basic Research, grant 19-55-18006, and by Bulgarian National Science Fund, grant KP-06-Russia-10.</p>

2020 ◽  
Author(s):  
Andrei Kosterov ◽  
Mary Kovacheva ◽  
Maria Kostadinova-Avramova ◽  
Pavel Minaev ◽  
Nataliya Sal'naya ◽  
...  

<p>The thorough understanding of magnetic mineralogy is a prerequisite of any successful palaeomagnetic, and in particular, archaeomagnetic study. Magnetic minerals in archaeological ceramics and baked clay may be inherited from the parent material, or, more frequently, formed during the firing process. The resulting magnetic mineralogy may be complex, including ferrimagnetic phases not commonly encountered in rocks. Towards this end, we carried out a detailed rock magnetic study on a representative collection of archaeological ceramics (baked clay from combustion structures and bricks) from Bulgaria and Russia. Experiments included measurement of isothermal remanence acquisition and demagnetization as a function of temperature between 20°C and >600°C, and a variant of Lowrie 3-axis IRM test with measurements performed at elevated temperatures. For selected samples, low-temperature measurements of saturation remanence and initial magnetic susceptibility between 1.8 K and 300 K have been carried out.<br>All studied samples contain a magnetically soft mineral identified as maghemite probably substituted by Al and/or Ti. Stoichiometric magnetite has never been observed, as evidenced by the absence of the Verwey phase transition. In addition, one or two magnetically hard mineral phases have been detected, differing sharply in their respective unblocking temperatures. One of these unblocking between 540°C and 620°C is believed to be substituted hematite. Another phase unblocks at much lower temperatures, between 140°C and 240°C, and its magnetic properties correspond to an enigmatic high coercivity, stable?, low unblocking temperature (HCSLT) phase of McIntosh et al. [McIntosh, G., M. Kovacheva, G. Catanzariti, M. L. Osete, and L. Casas (2007), Geophys. Res. Lett., 34, L21302, doi: 10.1029/2007GL031168]. In a few samples high- and low-unblocking temperature magnetically hard phases appear to coexist, in the others the HCSLT phase is the only magnetically hard mineral present. We finally compare the samples performance in archaeointensity experiments with their respective magnetic mineralogy.<br>This study is supported by Russian Foundation of the Basic Research, grant 19-55-18006, and Bulgarian National Science Fund, grant KP-06-Russia-10.</p>


2021 ◽  
Author(s):  
Maria Kostadinova-Avramova ◽  
Petar Dimitrov ◽  
Andrei Kosterov ◽  
Mary Kovacheva

<p>Numerous historical sources and archaeological monuments attest the age of Antiquity in Bulgaria – from both the early Roman period (I – III c.) and Late Antiquity (IV – VI c.). Owing to systematic archaeological excavations, lasting more than 100 years, plenty of information has been accumulated concerning not only all aspects and manifestations of its material culture, but also their evolution and chronology.  This in turn allows for interdisciplinary fields such as archaeomagnetism to progress.</p><p>There are many archaeomagnetically studied archaeological structures from the Antiquity. The results included in the Bulgarian database form 74 reference points. However, only 20 of them are full-vector determinations because 70 % of the investigated materials are bricks. Hence, the secular variation of declination is poorly constrained within the considered period. Moreover, the reuse of bricks in the constructions occurred quite often (especially in the Late Antiquity) providing for possible errors in archaeological dating. In addition, stronger effects of magnetic anisotropy and cooling rate are usually expected for bricks than for hearths, domestic ovens, production kilns or burnt dwelling remains (there are no results from pottery in the Bulgarian dataset) and both factors are not evaluated for most of the older results. All this can explain the contradictions observed between some of the experimental results juxtaposed over the absolute time scale. In an attempt to clarify these contradictions 13 baked clay structures from eight archaeological sites were archaeomagnetically studied producing seven new directional and eight new intensity data. The samples collected possess variable magnetic properties suggesting differences in clay sources and/or firing conditions. Magnetically soft minerals prevail in seven structures but in the remaining six, abundant HCSLT phase is detected. The success rate of archaeointensity determination experiments vary from 49 to 100 %. It appears that samples containing HCSLT phase always produces good araeointensity results unlike those with the dominant presence of soft carriers.</p><p>The new reference points are compared with the present compilation of Bulgarian archaeomagnetic dataset and with the data from the neighboring countries.</p><p> </p><p>This study is supported by the grant KP-06-Russia-10 from the Bulgarian National Science Fund and Russian Foundation of the Basic Research grant 19-55-18006.</p>


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


Alloy Digest ◽  
1956 ◽  
Vol 5 (7) ◽  

Abstract DOWMETAL HZ32XA is a magnesium-thorium-zinc-zirconium alloy having good high temperature creep resistance, and is recommended for applications at elevated temperatures. It is used in the artificially aged condition (T5). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as heat treating, machining, and joining. Filing Code: Mg-26. Producer or source: The Dow Chemical Company.


Alloy Digest ◽  
1972 ◽  
Vol 21 (7) ◽  

Abstract UDIMET 105 is a nickel-base alloy which was developed for service at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-175. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract CARPENTER L-605 alloy is a nonmagnetic cobalt-base alloy that has good oxidation and corrosion resistance and high strength at elevated temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-81. Producer or source: Carpenter.


Alloy Digest ◽  
1981 ◽  
Vol 30 (6) ◽  

Abstract FANSTEEL 85 METAL is a columbium-base alloy characterized by good fabricability at room temperature, good weldability and a good combination of creep strength and oxidation resistance at elevated temperatures. Its applications include missile and rocket components and many other high-temperature parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and bend strength as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-7. Producer or source: Fansteel Metallurgical Corporation. Originally published December 1963, revised June 1981.


Alloy Digest ◽  
2009 ◽  
Vol 58 (3) ◽  

Abstract Inconel Alloy N06230 is a Ni-Cr-W alloy with excellent strength and resistance to oxidation at elevated temperatures. This alloy offers good metallurgical stability and is readily fabricated by conventional processes and procedures. This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-667. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document