Subduction zone seismo-dynamics: how to bridge the gap between long-term subduction dynamics and megathrust seismicity?

Author(s):  
Adam Beall ◽  
Fabio A. Capitanio ◽  
Ake Fagereng ◽  
Ylona van Dinther

<p>The largest and most devastating earthquakes on Earth occur along subduction zones. Here, long-term plate motions are accommodated in cycles of strain accumulation and release. Episodic strain release occurs by mechanisms ranging from rapid earthquakes to slow-slip and quasi-static creep along the plate interface. Slip styles can vary between and within subduction zones, though it is unclear what controls margin-scale variability. Current approaches to seismo-tectonics primarily relate the stress state and seismogenesis at subduction margins to interface material properties and plate kinematics, constrained by recorded seismic slip, GPS motions and integrated strain. At larger spatio-temporal scales, significant progress has been made towards the understanding of subduction dynamics and emerging self-consistent plate motions, tectonics and stress coupling at plate margins. The margin stress state is ultimately linked to the force balance arising from interactions between the slab, mantle flow and upper plate. These mantle and lithosphere dynamics are thus expected to govern the tectonic regimes under which seismicity occurs. It remains unclear how these longer- and shorter-term perspectives can be reconciled. We review the aspects of large-scale subduction dynamics that control tectonic loading at plate margins, discuss possible influences on the stress state of the plate interface, and summarise recent advances in integrating the earthquake cycle and large-scale dynamics. It is plausible that variations in large-scale subduction dynamics could systematically influence seismicity, though it remains unclear to what degree this interplay occurs directly through the plate interface stress state and/or indirectly, corresponding to variation of other subduction zone characteristics. While further constraints of the geodynamic controls on the nature of the plate interface and their incorporation into probabilistic earthquake models is required, their ongoing development holds promise for an improved understanding of the global variation of large earthquake occurrence and their associated risk.</p>

2021 ◽  
Author(s):  
Kai Xue ◽  
Wouter P. Schellart ◽  
Vincent Strak

<p>Overriding plate deformation (OPD) and topography vary at different subduction zones, with some subduction zones showing mainly overriding plate extension and low topography (e.g. Mariana, Tonga, Izu-Bonin subduction zones), while some showing mainly shortening and elevated topography (e.g. Makran, southern Manila subduction zones). Here we investigate how different subduction modes, namely trench retreat and trench advance, affect OPD and generate corresponding topography with fully dynamic analogue models of time-evolving subduction in three-dimensional space. We conduct two sets of experiments, one of which is characterized by trench retreat and slab rollback, and the other characterized by trench advance and slab rollover. We compute the mantle flow, the overriding plate strain and topography during subduction using the particle image velocimetry technique (PIV). The overriding plate in the experiments showing continuous trench retreat experiences overall extension, while in the experiments with trench advance following trench retreat it experiences overall shortening. The overriding plate in both trench retreat and trench advance subduction modes present fore-arc shortening and intra-arc extension. Our experiments indicate that the overall OPD except in the fore-arc region is mainly driven by the horizontal mantle flow at the base of the OP inducing a viscous drag force (F<sub>D</sub>), and is determined by the gradient of the horizontal mantle flow velocity (dv<sub>x</sub>/dx). Furthermore, a large-scale trenchward overriding plate tilting and an overall subsidence of the overriding plate were observed in the experiments showing continuous trench retreat, while a landward tilting and an overall uplift of the overriding plate were observed during long-term trench advance. The two types of topography during the two different subduction modes can be ascribed to the large-scale trenchward and landward mantle flow, respectively, and thus represent forms of dynamic topography. Our models showing trench advance provide a possible mechanism for OPD in the Makran subduction zone, which has experienced overall trench-normal tectonic shortening in the overriding plate, but shows extension in a local region of the coastal Makran that is spatially comparable to that in our experiments.  In addition, these models might also provide an explanation for the regional topography at the Makran subduction zone, which shows a long-wavelength topographic high in the overriding plate near the trench that decreases northward.</p>


2021 ◽  
Author(s):  
Nadaya Cubas ◽  
Philippe Agard ◽  
Roxane Tissandier

<p>Predicting the spatial extent of mega-earthquakes is an essential ingredient of earthquake hazard assessment. In subduction zones, this prediction mostly relies on geodetic observations of interseismic coupling. However, such models face spatial resolution issues and are of little help to predict full or partial ruptures of highly locked patches. Coupling models are interpreted in the framework of the rate-and-state friction laws. However, these models are too idealized to take into account the effects of a geometrically or rheologically complex plate interface. In this study, we show, from the critical taper theory and a mechanical analysis of the topography, that all recent mega-earthquakes of the Chilean subduction zone are surrounded by distributed interplate deformation emanating from either underplating or basal erosion. This long-lived plate interface deformation builds up stresses ultimately leading to earthquake nucleation. Earthquakes then propagate along a relatively smooth surface and are stopped by segments of heterogeneously distributed deformation. Our results are consistent with long-term features of the subduction margin, with observed short-term deformation as well as physical parameters of recovered subducted fragments. They also provide an explanation for the apparent mechanical segmentation of the megathrust, reconciling many seemingly contradictory observations on the short- and long-term deformation. Consequently, we propose that earthquake segmentation relates to the distribution of deformation along the plate interface and that slip deficit patterns reflect the along-dip and along-strike distribution of the plate interface deformation. Topography would therefore mirror plate interface deformation and could serve to improve earthquake rupture prediction.</p>


2020 ◽  
Author(s):  
Bernhard Steinberger ◽  
Douwe van Hinsbergen

<p>Identifying the geodynamic processes that trigger the formation of new subduction zones is key to understand what keeps the plate tectonic cycle going, and how plate tectonics once started. Here we discuss the possibility of plume-induced subduction initiation. Previously, our numerical modeling revealed that mantle upwelling and radial push induced by plume rise may trigger plate motion change, and plate divergence as much as 15-20 My prior to LIP eruption. Here we show that, depending on the geometry of plates, the distribution of cratonic keels and where the plume rises, it may also cause a plate rotation around a pole that is located close to the same plate boundary where the plume head impinges: If that occurs near one end of the plate boundary, an Euler pole of the rotation may form along that plate boundary, with extension on one side, and convergence on the other.  This concept is applied to the India-Africa plate boundary and the Morondova plume, which erupted around 90 Ma, but may have influenced plate motions as early as 105-110 Ma. If there is negligible friction, i.e. there is a pre-existing weak plate boundary, we estimate that the total amount of convergence generated in the northern part of the India-Africa plate boundary can exceed 100 km, which is widely thought to be sufficient to initiate forced, self-sustaining subduction. This may especially occur if the India continental craton acts like an “anchor” causing a comparatively southern location of the rotation pole of the India plate. Geology and paleomagnetism-based reconstructions of subduction initiation below ophiolites from Pakistan, through Oman, to the eastern Mediterranean reveal that E-W convergence around 105 Ma caused forced subduction initiation, and we tentatively postulate that this is triggered by Morondova plume head rise. Whether the timing of this convergence is appropriate to match observations on subduction initiation as early as 105 Ma depends on the timing of plume head arrival, which may predate eruption of the earliest volcanics. It also depends on whether a plume head already can exert substantial torque on the plate while it is still rising – for example, if the plate is coupled to the induced mantle flow by a thick craton.</p>


2021 ◽  
Author(s):  
Armel Menant ◽  
Onno Oncken ◽  
Johannes Glodny ◽  
Samuel Angiboust ◽  
Laurent Jolivet ◽  
...  

<p>Subduction margins are the loci of a wide range of deformation processes occurring at different timescales along the plate interface and in the overriding forearc crust. Whereas long-term deformation is usually considered as stable over Myr-long periods, this vision is challenged by an increasing number of observations suggesting a long-term pulsing evolution of active margins. To appraise this emerging view of a highly dynamic subduction system and identify the driving mechanisms, detailed studies on high pressure-low temperature (HP-LT) exhumed accretionary complexes are crucial as they open a window on the deformation history affecting the whole forearc region.</p><p>In this study, we combine structural and petrological observations, Raman spectroscopy on carbonaceous material, Rb/Sr multi-mineral geochronology and thermo-mechanical numerical models to unravel with an unprecedented resolution the tectono-metamorphic evolution of the Late-Cenozoic HP-LT nappe stack cropping out in western Crete (Hellenic subduction zone). A consistent decrease of peak temperatures and deformation ages toward the base of the nappe pile allows us to identify a minimum of three basal accretion episodes between ca. 24 Ma and ca. 15 Ma. On the basis of structural evidences and pressure-temperature-time-strain predictions from numerical modeling, we argue that each of these mass-flux events triggered a pulse in the strain rate, sometimes associated with a switch of the stress regime (i.e., compressional/extensional). Such accretion-controlled transient deformation episodes last at most ca. 1-2 Myr and may explain the poly-phased structural records of exhumed rocks without involving changes in far-field stress conditions. This long-term background tectonic signal controlled by deep accretionary processes plays a part in active deformations monitored at subduction margins, though it may remain blind to most of geodetic methods because of superimposed shorter-timescale transients, such as seismic-cycle-related events.</p>


2020 ◽  
Author(s):  
Armel Menant ◽  
Samuel Angiboust ◽  
Taras Gerya ◽  
Robin Lacassin ◽  
Martine Simoes ◽  
...  

<p>Subduction zones are the loci of huge mass transfers, including accretion and erosion processes responsible for the long-term formation (and destruction) of fore-arc margins. Study of now-exhumed deep portions of the fore-arc crust revealed km-scale tectonic units of marine sediments and oceanic crust, which have been underplated (i.e. basally accreted) to the overriding plate. However, geophysical observations of this deep process in active subduction zones are unclear and the dynamics of tectonic underplating, as well as its existence, along most of active margins remain controversial. We attempt to shed light on this critical process from the plate interface where tectonic slicing is triggered, to the surface where topographic variations are expected in response to such a mass transfer.</p><p>Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation, preservation and destruction of underplated crustal nappes at 10-40-km depth in subductions zones. Our results show that subduction segments exhibiting an increasing frictional behaviour control deep accretionary dynamics and that the long-term frictional zonation of the plate interface is stable due to a positive feedback between fluid distribution and effective stress. As a result, discrete underplating events follow one after another for tens of Myr, leading to the formation of a thick duplex structure supporting a coastal topographic high. The rise of this high topography is cadenced by Myr-scale uplift-then-subsidence cycles, characterising each underplating event and the subsequent period of wedge re-equilibration. This periodical evolution is significantly modified by changing the rheological properties of the material entering the subduction zone, suggesting that tectonic underplating is likely a transient process active along most of active margins, depending on severe variations of the hydro-mechanical properties of the plate interface at Myr timescale.</p>


2012 ◽  
Vol 166-169 ◽  
pp. 2190-2196 ◽  
Author(s):  
Zheng Ru Tao ◽  
Xia Xin Tao ◽  
Wei Jiang

Evaluation approach of occurrence probability for subduction-zone earthquakes adopted in “National Seismic Hazard Maps for Japan” is reviewed, especially for the area of the 2011 off the Pacific coast of Tohoku Earthquake (2011 Tohoku Earthquake in short). One problem is pointed that the occurrence probability of such a large earthquake cannot be predicted just from seismicity in a region small like Miyagi-ken-Oki area or southern Sanriku-Oki. The whole subduction zone in eastern Japan is suggested to be taken into account with the interaction between the energy released in quakes. Finally, a simple test to predict the next large earthquake in the subduction-zone by means of Artificial Neural Network is presented, and the result for the years of 2008-2018 shows there may be an earthquake with magnitude up to 8.8 in the zone.


2021 ◽  
Author(s):  
◽  
Sonja Melanie Greve

<p>Seismic anisotropy across the Hikurangi subduction zone measured from shear-wave splitting exhibits strong lateral changes over distances of about 250 km. Teleseismic S-phases show trench-parallel fast polarisations with increasing delay times across the forearc and arc region. In the arc region, delay times reach up to 4.5 s, one of the largest delay times measured in the world. Such large delay times suggest strong anisotropy or long travel paths through the anisotropic regions. Delay times decrease systematically in the backarc region. In contrast, local S-phases exhibit a distinct change from trench-parallel fast orientations in the forearc to rench-perpendicular in the backarc, with average delay times of 0.35 s. In the far backarc, no apparent anisotropy is observed for teleseismic S-phases. The three different anisotropic regions across the subduction zone are interpreted by distinct anisotropic domains at depth: 1) In the forearc region, the observed "average" anisotropy (about 4%) is attributed to trench-parallel mantle flow below the slab with possible contributions fromanisotropy in the slab. 2) In the arc region, high (up to 10%) frequency dependent anisotropy in the mantle wedge, ascribed to melt, together with the sub-slab anisotropy add up to cause the observed high delay times. 3) In the far backarc region, the mantle wedge dynamic ends. The apparent isotropy must be caused by different dynamics, e.g. vertical mantle flow or small-scale convection, possibly induced by convective removal of thickened lithosphere. The proposed hypothesis is tested using anisotropicwave propagation in two-dimensional finite difference models. Large-scale models of the subduction zone (hundreds of kilometres) incorporating the proposed anisotropic domains of the initial interpretation result in synthetic shear-wave splittingmeasurements that closely resemble all large-scale features of real data observations across the central North Island. The preferred model constrains the high (10%) anisotropy to the mantle wedge down to about 100 kmunder the CVR, bound to the west by an isotropic region under the western North Island; the slab is isotropic and the subslab region has average (3.5%) anisotropy, down to 300 km. This model succeeds in reproducing the constant splitting parameters in the forearc region, the strong lateral changes across the CVR and the apparent isotropy in the far backarc region, as well as the backazimuthal variations. The influence of melt on seismic anisotropy is examined with different small-scale (tens of kilometres) analytical modelling approaches calculating anisotropy due to melt occurring in inclusions, cracks or bands. Conclusions are kept conservative with the intention not to over-interpret the data due to model complexities. The models show that seismic anisotropy strongly depends on the scale of inclusions and wavelengths. Frequency dependent anisotropy for local and teleseismic shear-waves, e.g. for frequency ranges of 0.01-1Hz can be observed for aligned inclusions on the order of tens of meters. To test the proposed frequency dependence in the recorded data, two different approaches are introduced. Delay times exhibit a general trend of -3 s/Hz. A more detailed analysis is difficult due to the restricted frequency content of the data. Future studies with intermediate frequency waves (such as regional S-phases) are needed to further investigate the cause of the discrepancy between local and teleseismic shear-wave splitting. An additional preliminary study of travel time residuals identifies a characteristic pattern across central North Island. Interpretation highlights the method as a valuable extension of the shear-wave splitting study and suggests a more detailed examination to be conducted in future.</p>


2020 ◽  
Author(s):  
Ylona van Dinther

&lt;p&gt;&lt;span&gt;The strength of faults is subject of an important debate throughout various Earth Scientific disciplines. Different scientific communities have different perspectives with respect to appropriate values for friction coefficients &amp;#956;. Geodynamicists with a long-term perspective require very low effective strengths (&amp;#956;&lt;0.05), while at the same time realizing mountains need to be sustained as well. Geologists and seismologists typically start from Byerlee friction coefficients of 0.6&lt;&amp;#956;&lt;0.85, whereas rock mechanics experiments at high seismic slip rates show short-term low dynamic friction values of 0.03&lt;&amp;#956;&lt;0.3. Here I show that both long- and short-term approaches can be made more compatible through considering that a regional or global frictional strength should be approached as a strain-averaged quantity. Doing this accounts for large variations of strain in both time and space. What matters for large-scale models is that most deformation occurs over a very small space and time during which friction is exceptionally low, thus making the representative long-term strength low. This is supported by seismo-thermo-mechanical models that self-consistently simulate the dynamics of both long-term subduction and short-term seismogenesis. The latter sustain mountain building, while representative earthquake-like events occur on faults with pore fluid pressure-effective static friction coefficients between 0.125 and 0.005 (or 0.75&lt;Pf/Ps&lt;0.99). These low friction values suggest faults are weak and suggest the dominant role of fluid pressures in weakening faults in subduction zones. This is confirmed in analytical considerations based on mechanical energy dissipation, which provide an equation to calculate the long-term fault strength as a strain-average quantity. Constraining the four parameters in this equation by observations confirms that fluid weakening is more important for long-term weakening than dynamic frictional weakening and low static friction coefficients. From the short-term perspective of modeling earthquake rupture dynamics it is now also becoming evident that fluid overpressured faults are preferable. They namely facilitate the incorporation of laboratory-observed dynamic weakening (70-90%) by limiting the stress drop to reasonable values. In summary, this cross-scale perspective supports long-term effective friction values in the range of about 0.03 to 0.2.&lt;/span&gt;&lt;/p&gt;


2020 ◽  
Vol 6 (13) ◽  
pp. eaay3314 ◽  
Author(s):  
Philip M. Barnes ◽  
Laura M. Wallace ◽  
Demian M. Saffer ◽  
Rebecca E. Bell ◽  
Michael B. Underwood ◽  
...  

Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.


Solid Earth ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 1035-1049 ◽  
Author(s):  
Dietrich Lange ◽  
Frederik Tilmann ◽  
Tim Henstock ◽  
Andreas Rietbrock ◽  
Danny Natawidjaja ◽  
...  

Abstract. The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel-time data of local earthquakes for vp and vp∕vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean-bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). The 2-D and 3-D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3-D velocity model shows prevailing trench-parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at  ∼ 180 km distance to the trench. vp velocities beneath the magmatic arc and the Sumatran fault zone (SFZ) are around 5 km s−1 at 10 km depth and the vp∕vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp∕vs values of 1.85 at  ∼ 150 km distance to the trench in the region of the Mentawai Fault. vp∕vs ratios suggest an absence of large-scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between the Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.


Sign in / Sign up

Export Citation Format

Share Document