Influence of the filter properties in the diffusive transport of ions through a bentonite. Sensitivity analysis

Author(s):  
Virginia Cabrera ◽  
Rubén López-Vizcaíno ◽  
Ángel Yustres ◽  
Vicente Navarro

<p>The deep geological repository concept for spent nuclear fuel considers many safety elements. Among them, compacted bentonite has been selected as the primary engineering barrier between the encapsulated radioactive waste and the host rock. Thermo-hydro-mechanical behaviour of this material has been studied in detail from an experimental and numerical point of view. Furthermore, the study of chemical behaviour has become very important, both for the evaluation of the transport of species through the clay matrix and for the evaluation of their coupling to other physico-chemical phenomena.</p><p>Generally, to conduct these types of studies, infiltration tests through compacted bentonite columns are carried out using an experimental setup composed of common parts: (i) porewater and infiltration water reservoirs, (ii) pumping devices and (iii) a confined sample of bentonite. The infiltration/output solutions are injected/extracted through filters positioned in the top/bottom of the sample. The results obtained in these tests are strongly influenced by the properties of these filters. For this reason, it is very important how the chemical species and the fluid are transported in the filters to correctly interpret the experimental observations. The study presented in this work is framed in this context, in which a numerical sensitivity analysis of the transport properties and size of the filters has been conducted. For this purpose, a reactive transport model for bentonites (assuming this material as a double porosity media) formulated by the authors and fully implemented in the multiphysics platform, COMSOL, has been used to simulate a cation exchange-infiltration test in MX-80 bentonite defined in the “Chemical session” of the Task Force on Engineered Barrier Systems (EBS) organised by SKB AB. The results obtained depend on the tortuosity, porosity and thickness of the filters. These parameters have been estimated for the correct interpretation of the selected test.</p>

2020 ◽  
Vol 195 ◽  
pp. 04002
Author(s):  
Ángel Yustres ◽  
Rubén López-Vizcaíno ◽  
Virginia Cabrera ◽  
Vicente Navarro

The proposed use of active clays for the isolation of radioactive wastes in deep geological repositories has been followed by a deeper understanding of this type of soils. This increased knowledge has led to the need for both conceptual and numerical models capable of capturing the main trends in behaviour and the different couplings between different physical-chemical phenomena. In addition, the model must have a high degree of flexibility that enables it to accommodate future developments or new relevant phenomena. This work presents a numerical THMC code developed entirely on the COMSOL Multiphysics numerical implementation platform, which provides the required adaptability. This model includes, for the first time in this environment, a reactive transport model in unsaturated porous media for a relevant geochemical system (consistent with the MX-80 bentonite) together with a THM model based on a double porosity approach. The chemical potentials of water and solutes are used for the definition of thermodynamic equilibria between both porosity levels. Trends in the behaviour of a bentonite sample under oedometric conditions are satisfactorily simulated in response to a process of saturation and change in salinity conditions. Variations in swelling pressure, porosity distribution or dissolution/precipitation of the main accessory minerals are analysed and explained by means of the proposed conceptual model.


2017 ◽  
Author(s):  
Scott K. Hansen ◽  
Sachin Pandey ◽  
Satish Karra ◽  
Velimir V. Vesselinov

Abstract. Groundwater contamination by heavy metals is a critical environmental problem for which in situ remediation is frequently the only viable treatment option. For such interventions, a three-dimensional reactive transport model of relevant biogeochemical processes is invaluable. To this end, we developed a model, CHROTRAN, for in situ treatment, which includes full dynamics for five species: a heavy metal to be remediated, an electron donor, biomass, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, bio-fouling and biomass death. Our software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injection points, and features full coupling between flow and reactive transport. We describe installation and usage and present two example simulations demonstrating its unique capabilities. One simulation suggests an unorthodox approach to remediation of Cr(VI) contamination.


2006 ◽  
Vol 94 (9-11) ◽  
Author(s):  
Laurent de Windt ◽  
H. Schneider ◽  
C. Ferry ◽  
H. Catalette ◽  
V. Lagneau ◽  
...  

A physico-chemical model developed for spent fuel alteration was integrated in a global reactive transport model of a spent fuel disposal system, considering both decaying and stable isotopes, corroded steel canisters, bentonite backfills and a clayey host-rock. Fuel evolution took into account radiolytic-enhanced corrosion and long-term solubility-controlled dissolution as well as instantaneous release fractions. The calculations show that spent-fuel dissolution has no significant alteration effect on the near-field components except an oxidizing plume in the vicinity of the waste packages. The dissolved uranyl species, partly precipitate as schoepite on the fuel pellets, and partly diffuse in the near-field where magnetite and pyrite reduce U(VI) to yield uraninite precipitation. Under disposal conditions, preliminary calculations indicate that steel corrosion may generate sufficient dissolved hydrogen as to react with radiolytic oxidants and inhibit fuel dissolution. The formation of a protective schoepite layer could also reduce the alteration of fuel pellets. Radionuclides migration (Am, Cs, I) in the near-field is discussed in a second stage discriminating between sorption, precipitation and radioactive decay processes. The migration of Cs is translated in terms of cumulative activity profiles useful for integrated performance assessment.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Jixiang Huo ◽  
Fuheng Ma ◽  
Hanzhou Song

Pyrite existed widely in nature and its oxidative dissolution might lead groundwater to become acidic, which was harmful to the environment and indeed to artificial building materials. The reactive transport model was a useful tool to predict the extent of such pollution. However, the chemical species were coupled together in the form of a reaction term, which might lead the equations to be nonlinear and thus difficult to solve. A decoupling approach was presented: linear algebraic manipulations of the stoichiometric coefficients of the chemical reactions for the purpose of reducing the number of equation variables and simplifying the reactive source were used. Then the original and decoupled models were solved separately, by both a direct solver and an iterative solver. By comparing the solution times of two models, it was shown that the decoupling approach could enhance the computational efficiency, especially in situations using denser meshes. Using a direct solver, more solution time was saved than when using an iterative version.


Sign in / Sign up

Export Citation Format

Share Document