Recent updates to the atmospheric chemistry modeling of the ECMWF IFS in support to CAMS

Author(s):  
Vincent Huijnen ◽  
Jason Williams ◽  
Idir Bouarar ◽  
Sophie Belamari ◽  
Simon Chabrillat ◽  
...  

<p>The Integrated Forecasting System (IFS) of ECMWF is the core of the Copernicus Atmosphere Monitoring Service (CAMS) which provides global analyses and forecasts of atmospheric composition, namely reactive gases, aerosol and greenhouse gases. With respect to the atmospheric chemistry component, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere, combined with the Cariolle scheme to describe stratospheric ozone. In an alternative, more recent configuration also stratospheric ozone chemistry is included based on the BASCOE chemistry module. Alternative atmospheric chemistry modules which can be employed are based on MOZART and MOCAGE chemistry. <br>Recently, further revisions to the modified CB05 tropospheric chemistry scheme have been developed, focusing both on inorganic and organic chemistry, with the aim of improving the quality of existing air-quality products, and the development of new products. On major update is a revision of the isoprene oxidation scheme based on those employed in existing chemistry transport models, as well as inclusion of the basic chemistry describing C8 and C9 aromatics degradation. <br>An example of a new product derived from these updates include a description of global distribution of glyoxal, while this also resulted in an improved modeling of OH recycling particularly over tropical forests. Also we support improved secondary organic aerosol formation due to gaseous anthropogenic, biogenic and biomass burning sources.<br>In this contribution we provide an overview of these revisions, and provide a first quantification of their uncertainties, by comparing products to observations and to those from alternative chemistry modules.</p>

2014 ◽  
Vol 7 (6) ◽  
pp. 7733-7803 ◽  
Author(s):  
J. Flemming ◽  
V. Huijnen ◽  
J. Arteta ◽  
P. Bechtold ◽  
A. Beljaars ◽  
...  

Abstract. A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system, in which the Chemical Transport Model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in the CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A one-year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulphur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, winter time SO2 and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about ten times more computationally efficient than IFS-MOZART.


2015 ◽  
Vol 8 (11) ◽  
pp. 3523-3543 ◽  
Author(s):  
H. Eskes ◽  
V. Huijnen ◽  
A. Arola ◽  
A. Benedictow ◽  
A.-M. Blechschmidt ◽  
...  

Abstract. The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols, and greenhouse gases, and is based on the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF). The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past 3 years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high-pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.


2020 ◽  
Author(s):  
Jerome Barre ◽  
Ilse Aben ◽  
Melanie Ades ◽  
Anna Agusti-Panareda ◽  
Gianpaolo Balsamo ◽  
...  

<p>The European Union’s Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition. It uses the ECMWF Integrated Forecasting System (IFS), which includes meteorological and atmospheric composition variables, such as reactive gases, greenhouse gases and aerosols, for its global forecasts and reanalyses. The current green-house gases operational suite monitors CH4 and CO2 and assimilates TANSO and IASI retrievals for both species. The TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor (S5P) satellite launched in October 2017 yields a wealth of atmospheric composition data, including CH<sub>4</sub> retrievals at unprecedented high horizontal resolution (7km) and up to daily revisit time. We used the IFS to perform monitoring experiments at different horizontal resolutions (25 km and 9 km). We also performed first data assimilation experiments at 25 km horizontal resolution.</p><p>This first set of monitoring experiments shows the potential of the TROPOMI CH<sub>4</sub> retrievals to correct known biases that exist in the current CAMS analyses and forecasts. Assimilation experiments of TROPOMI CH<sub>4</sub> shows that adding the instrument in the operational chain would significantly improve the analysis and forecasts. Detection of CH<sub>4</sub> sources seen by TROPOMI compared to CAMS also shows the potential of the instrument to inform on and infer anthropogenic and natural sources. For example, discrepancies between TROPOMI retrievals and CAMS fields in the CH<sub>4</sub> levels associated with oil and gas extraction activities show very promising perspectives for monitoring and analysis of CH<sub>4</sub> concentration and emissions. We will finally discuss the challenges and progress made towards performing inversions using the IFS operational system.  </p>


2015 ◽  
Vol 8 (4) ◽  
pp. 975-1003 ◽  
Author(s):  
J. Flemming ◽  
V. Huijnen ◽  
J. Arteta ◽  
P. Bechtold ◽  
A. Beljaars ◽  
...  

Abstract. A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A 1 year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, and wintertime SO2, and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about 10 times more computationally efficient than IFS-MOZART.


2016 ◽  
Author(s):  
Vincent Huijnen ◽  
Johannes Flemming ◽  
Simon Chabrillat ◽  
Quentin Errera ◽  
Yves Christophe ◽  
...  

Abstract. We present a model description and benchmark evaluation of an extension of the tropospheric chemistry module in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) with stratospheric chemistry, referred to as C-IFS-CB05-BASCOE (for brevity here referred to as C-IFS-TS). The stratospheric chemistry originates from the one used in the Belgian Assimilation System for Chemical ObsErvations (BASCOE), and is here combined with the modified CB05 chemistry module for the troposphere as currently used operationally in the Copernicus Atmosphere Monitoring Service (CAMS). In our approach either the tropospheric or stratospheric chemistry module is applied depending on the altitude of each individual grid box with respect to the tropopause. An evaluation of a 1.5 year long C-IFS-TS simulation indicates good performance of the system in terms of stratospheric ozone, nitrogen dioxide as well as other reactive tracers in comparison to various satellite retrieval products. This marks a first step towards a chemistry module within IFS that encompasses both tropospheric and stratospheric composition.


2016 ◽  
Vol 9 (9) ◽  
pp. 3071-3091 ◽  
Author(s):  
Vincent Huijnen ◽  
Johannes Flemming ◽  
Simon Chabrillat ◽  
Quentin Errera ◽  
Yves Christophe ◽  
...  

Abstract. We present a model description and benchmark evaluation of an extension of the tropospheric chemistry module in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) with stratospheric chemistry, referred to as C-IFS-CB05-BASCOE (for brevity here referred to as C-IFS-TS). The stratospheric chemistry originates from the one used in the Belgian Assimilation System for Chemical ObsErvations (BASCOE), and is here combined with the modified CB05 chemistry module for the troposphere as currently used operationally in the Copernicus Atmosphere Monitoring Service (CAMS). In our approach either the tropospheric or stratospheric chemistry module is applied, depending on the altitude of each individual grid box with respect to the tropopause. An evaluation of a 2.5-year long C-IFS-TS simulation with respect to various satellite retrieval products and in situ observations indicates good performance of the system in terms of stratospheric ozone, and a general improvement in terms of stratospheric composition compared to the C-IFS predecessor model version. Possible issues with transport processes in the stratosphere are identified. This marks a key step towards a chemistry module within IFS that encompasses both tropospheric and stratospheric composition, and could expand the CAMS analysis and forecast capabilities in the near future.


2008 ◽  
Vol 8 (4) ◽  
pp. 14033-14085 ◽  
Author(s):  
D. Taraborrelli ◽  
M. G. Lawrence ◽  
T. M. Butler ◽  
R. Sander ◽  
J. Lelieveld

Abstract. We present an oxidation mechanism of intermediate size for isoprene (2-methyl-1,3-butadiene) suitable for simulations in regional and global atmospheric chemistry models, which we call MIM2. It is a reduction of the corresponding detailed mechanism in the Master Chemical Mechanism (MCM v3.1) and intended as the second version of the well-established Mainz Isoprene Mechanism (MIM). Our aim is to improve the representation of tropospheric chemistry in regional and global models under all NOx regimes. We evaluate MIM2 and re-evaluate MIM through comparisons with MCM v3.1. We find that MIM and MIM2 compute similar O3, OH and isoprene mixing ratios. Unlike MIM, MIM2 produces small relative biases for NOx and organic nitrogen-containing species due to a good representation of the alkyl and peroxy acyl nitrates (RONO2 and RC(O)OONO2). Moreover, MIM2 computes only small relative biases with respect to hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), methanol (CH3OH), formaldehyde (HCHO), peroxy acetyl nitrate (PAN), and formic and acetic acids (HCOOH and CH3C(O)OH), being always below ≈6% in all NOx scenarios studied. Most of the isoprene oxidation products are represented explicitly, including methyl vinyl ketone (MVK), methacrolein (MACR), hydroxyacetone and methyl glyoxal. MIM2 is mass-conserving with respect to carbon, including CO2 as well. Therefore, it is suitable for studies assessing carbon monoxide (CO) from biogenic sources, as well as for studies focused on the carbon cycle. Compared to MIM, MIM2 considers new species like acetaldehyde (CH3CHO), propene (CH2=CHCH3) and glyoxal (CHOCHO) with global chemical production rates for the year 2005 of 7.3, 9.5 and 33.8 Tg/yr, respectively. Our new mechanism is expected to substantially improve the results of atmospheric chemistry models by more accurately representing the interplay between atmospheric chemistry, transport and deposition, especially of nitrogen reservoir species. MIM2 allows regional and global models to easily incorporate new experimental results on the chemistry of organic species.


2021 ◽  
Author(s):  
Claudia Volosciuk

<p>The Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) is driven by the need to understand the variability and trends in atmospheric composition and the related physical parameters, and to assess the consequences thereof. GAW provides reliable scientific information for a broad spectrum of users, including policymakers, on topics related to atmospheric chemical composition. The programme supports international environmental and climate agreements and improves our understanding of climate change and long-range transboundary air pollution through its work on greenhouse gases, aerosols, reactive gases, atmospheric deposition, stratospheric ozone, and ultraviolet radiation. GAW provides information based on combinations of observations, data analysis and modelling activities, and supports a number of applications at the global, regional and urban scale. This implies a variety of target groups and communication vectors. Due to the complexity and interrelations of the different constituents in atmospheric chemistry and the diversity of the target audience, communication of the related issues represents a substantial challenge. Some examples are questions like “If greenhouse gas emissions are falling, why do concentrations not decrease?”, “if satellite data show pollution reductions, why can’t we say that it is due to emission reductions?” etc.  </p><p>To sustain the credibility and increase the visibility of GAW within the WMO community and other national/international bodies, the broader scientific and policy communities, as well as the general public, increasing efforts towards “communicating GAW” are taken. The global pandemic related to COVID-19 was the dominating topic around the globe in 2020. This required adjustments to communication efforts. Due to in-person meetings being impossible, all communication efforts required delivery and engagement through virtual formats.</p><p>While emissions of carbon dioxide (among others) have decreased temporarily in 2020 due to COVID-19 restrictions, concentrations have continued to increase. This has led to confusion among many non-scientists who were surprised that the restrictions they were experiencing did not even have the effect of decreasing atmospheric concentrations of carbon dioxide. Thereby, the crisis has provided an opportunity to explain the difference between emissions and concentrations, emphasizing that carbon dioxide (and other greenhouse gases) are long-lived and remain in the atmosphere for a long time, and highlighting the importance to reach net-zero emissions. Similar confusion was related to the interpretation of the pollution levels and also required additional communication efforts.</p><p>Reflections on communication of atmospheric composition in the framework of WMO/GAW, including challenges and opportunities during the public health crisis will be presented.</p>


2020 ◽  
Author(s):  
Franziska Winterstein ◽  
Patrick Jöckel ◽  
Martin Dameris ◽  
Michael Ponater ◽  
Fabian Tanalski ◽  
...  

<p>Methane (CH<sub>4</sub>) is the second most important greenhouse gas, which atmospheric concentration is influenced by human activities and currently on a sharp rise. We present a study with numerical simulations using a Chemistry-Climate-Model (CCM), which are performed to assess possible consequences of strongly enhanced CH<sub>4</sub> concentrations in the Earth's atmosphere for the climate.</p><p>Our analysis includes experiments with 2xCH<sub>4</sub> and 5xCH<sub>4</sub> present day (2010) lower boundary mixing ratios using the CCM EMAC. The simulations are conducted with prescribed oceanic conditions, mimicking present day tropospheric temperatures as its changes are largely suppressed. By doing so we are able to investigate the quasi-instantaneous chemical impact on the atmosphere. We find that the massive increase in CH<sub>4</sub> strongly influences the tropospheric chemistry by reducing the OH abundance and thereby extending the tropospheric CH<sub>4</sub> lifetime as well as the residence time of other chemical pollutants. The region above the tropopause is impacted by a substantial rise in stratospheric water vapor (SWV). The stratospheric ozone (O<sub>3</sub>) column increases overall, but SWV induced stratospheric cooling also leads to enhanced ozone depletion in the Antarctic lower stratosphere. Regional  patterns of ozone change are affected by modification of stratospheric dynamics, i.e. increased tropical up-welling and stronger meridional transport  towards the polar regions. We calculate the net radiative impact (RI) of the 2xCH<sub>4</sub> experiment to be 0.69 W m<sup>-2</sup> and for the 5xCH<sub>4</sub> experiment to be 1.79 W m<sup>-2</sup>. A substantial part of the RI is contributed by chemically induced O<sub>3</sub> and SWV changes, in line with previous radiative forcing estimates and is for the first time splitted and spatially asigned to its chemical contributors.</p><p>This numerical study using a CCM with prescibed oceanic conditions shows the rapid responses to significantly enhanced CH<sub>4</sub> mixing ratios, which is the first step towards investigating the impact of possible strong future CH<sub>4</sub> emissions on atmospheric chemistry and its feedback on climate.</p>


2017 ◽  
Vol 200 ◽  
pp. 11-58 ◽  
Author(s):  
Barbara J. Finlayson-Pitts

The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.


Sign in / Sign up

Export Citation Format

Share Document