Root system monitoring using a mise-à-la-masse (MALM) extension to time-domain IP

Author(s):  
Benjamin Mary ◽  
Veronika Iván ◽  
Giorgio Cassiani

<p>The development, architecture, and activity of the plant root system has a key role in plant-soil-water interactions, and thus, in plant ecology both in agricultural and natural systems. The characterization of the flow of electric current in the root-soil system may provide non-invasive methodologies to observe the state and dynamics of this critical zone hidden in the shallow subsurface.</p><p>Inversion of Current source density (CSD) from Mise-a-la-masse (MALM) surveys provides a straightforward way to describe the shape of a conductive body that charges up. While numerous studies show a correlation between root mass density and electrical capacitance (Ehosioke et al., 2020), physical proofs of the underlying assumptions of such concepts are still missing. In particular, some authors questioned the hypothesis that the xylem behaves as a continuous conductive body with regard to its physiological state. Application of the MALM in conjunction with CSD helps distinguish the current pathway through the root system (Mary et al., 2019; Peruzzo et al., 2020).</p><p>As roots are electrically polarisable, their responses depend on the frequency of the current injection. Extending the CSD inversion to secondary voltages produced by secondary currents (after shutting down the primary current) may provide insights into transient phenomena associated with the polarization of the roots.</p><p>Based on a Self-Potential (SP) processing algorithm (Shao et al., 2018), we build and test a new inversion scheme of secondary voltages using synthetic models. Small-scale laboratory experiments are in progress on grapevine cuttings placed in water-filled rhizotrons. Root growth will be monitored using MALM in TDIP domain.  </p>

2018 ◽  
Vol 22 (10) ◽  
pp. 5427-5444 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Myriam Schmutz ◽  
Yuxin Wu ◽  
...  

Abstract. The investigation of plant roots is inherently difficult and often neglected. Being out of sight, roots are often out of mind. Nevertheless, roots play a key role in the exchange of mass and energy between soil and the atmosphere, in addition to the many practical applications in agriculture. In this paper, we propose a method for roots imaging based on the joint use of two electrical noninvasive methods: electrical resistivity tomography (ERT) and mise-à-la-masse (MALM). The approach is based on the key assumption that the plant root system acts as an electrically conductive body, so that injecting electrical current into the plant stem will ultimately result in the injection of current into the subsoil through the root system, and particularly through the root terminations via hair roots. Evidence from field data, showing that voltage distribution is very different whether current is injected into the tree stem or in the ground, strongly supports this hypothesis. The proposed procedure involves a stepwise inversion of both ERT and MALM data that ultimately leads to the identification of electrical resistivity (ER) distribution and of the current injection root distribution in the three-dimensional soil space. This, in turn, is a proxy to the active (hair) root density in the ground. We tested the proposed procedure on synthetic data and, more importantly, on field data collected in a vineyard, where the estimated depth of the root zone proved to be in agreement with literature on similar crops. The proposed noninvasive approach is a step forward towards a better quantification of root structure and functioning.


2018 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Myriam Schmutz ◽  
Yuxin Wu ◽  
...  

Abstract. The investigation of plant roots is inherently difficult and often neglected. Being out of sight, roots are often out of mind. Still, roots play a key role in the exchange of mass and energy between soil and the atmosphere, let alone the many practical applications in agriculture. In this paper, we propose a method for roots imaging based on the joint use of two electrical non-invasive methods, Electrical Resistivity Tomography (ERT) and Mise-a-la-Masse (MALM). The approach is based on the key assumption that the plant root system acts as an electrically conductive body, so that injecting electrical current in the plant stem will ultimately result in the injection of current in the subsoil through the root system, and particularly through the root terminations via hair roots. Evidence from field data, showing that voltage distribution is very different whether current is injected in the tree stem or in the ground, strongly supports this hypothesis. The proposed procedure involves a stepwise inversion of both ERT and MALM data that ultimately leads to the identification of electrical resistivity distribution, and of the current-injection root distribution in the three-dimensional soil space. This, in turn, is a proxy to the active (hair) root density in the ground. We tested the proposed procedure on synthetic data and, more importantly, on field data collected in vineyard, where the estimated depth of the root zone proved to be in agreement with literature on similar crops. The proposed non-invasive approach is a step forward towards a better quantification of roots structure and functioning.


2013 ◽  
Vol 54 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Anna Głuska

Extracting of a root system from the soil without losses is the main difficulty in investigations of the potato root system. In the years 1992-1998 at The Potato Research Institute, Jadwisin (Poland) an original method for potato root system investigation was developed.A special pot (40 cm in diameter, 100 cm high) made of zinc coated steel sheet 0,8 mm was constructed. This device may be opened lengthwise to obtain the whole intact root system of potato plant. Soil profile in the pot is formed in 10 horizontal layers separated by circles made of plastic mesh which enable distinguishing of roots related to certain soil horizons. The method described makes possible (in a relatively easy way) taking measurements of weight and length of roots in every 10-cm layer of soil up to depth of 1 meter, so as to assess: the weight of fresh and/or dry matter and length of the whole potato plant root system and its distribution in the soil profile. This method might be useful also for investigation of root systems of another species.


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Michel Moussus ◽  
Matthias Meier

High resolution live imaging promises new insights into the cellular and molecular dynamics of the plant root system in response to external cues. Microfluidic platforms are valuable analytical tools that...


1996 ◽  
Vol 10 (1) ◽  
pp. 169-173 ◽  
Author(s):  
Michael R. Blumhorst

Characterization of pesticide degradation in soil is an important component in determining the environmental impact of agriculturally-applied pesticides. Several techniques currently are being used to generate these data, but small-scale laboratory studies remain one of the most effective, cost-efficient mechanisms of evaluating pesticide behavior in soil. With small-scale studies, many different environmental factors can be incorporated into the experimental design, and with the use of14C-labeled material, these studies (often referred to as soil degradation or soil metabolism studies) provide information on test substance persistence, degradation, volatilization, and mineralization. Care must be exercised, however, in selecting the experimental parameters to be used because of the potential adverse or artificial effects on the soil system.


Sign in / Sign up

Export Citation Format

Share Document