On the interaction of interplanetary shocks and solar wind turbulence

Author(s):  
Alexander Pitna ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The propagation of collisionless shocks through the turbulent magnetized plasmas has been investigated for decades. The processes connected with the formation and propagation of Interplanetary (IP) shocks play a key role in the acceleration of particles and in the coupling to the Earth’s magnetosphere. However, many aspects of the interactions are poorly understood, e.g., the regime of turbulence in downstream/upstream medium, heating of the downstream plasma via turbulent dissipation, etc. Recently, a few authors have addressed the nature of fluctuations within the downstream regions of IP shocks and sheaths of ICMEs. In general, they have found that an IP shock enhances the fluctuation energy within the downstream plasma. Consequently, this should lead to the enhanced heating of the shocked plasma. In this study, we investigate whether the downstream region exhibits such a heating. In the analysis, we stress that the downstream region (in situ observation by a spacecraft) of an IP shock is an evolutionary record of the shocked plasma, i.e., the leading edge of a sheath is plasma that has been just shocked, while the plasma recorded 1 hour after the shock passage has been shocked roughly 5–6 hours earlier, on average. We illustrate this point investigating the relation of the enhanced levels of turbulent fluctuations by the IP shocks and the temperature evolution in the downstream plasma. Preliminary results suggest that the level of enhanced fluctuations affects the temperature profile in this region.</p>

2004 ◽  
Vol 61 (23) ◽  
pp. 2888-2898 ◽  
Author(s):  
François-Marie Bréon ◽  
Bérengère Dubrulle

Abstract Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as “subsun.” This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud-top layer and their characteristic tilt angle to the horizontal. Use is made of spaceborne measurements from the Polarization and Directionality of the Earth Reflectances (POLDER) instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10−3 and 10−2. For those oriented plates, the characteristic tilt angle is less than 1° in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500– 700 hPa, in agreement with typical in situ observation of plates in clouds. A simple aerodynamic model is proposed that accounts for the orienting torque of the flow as the plate falls under its own gravity and the disorienting effects of Brownian motion and atmospheric turbulence. The model indicates that the horizontal plate diameters are in the range 0.1 to a few millimeters. For such sizes, Brownian forces have a negligible impact on the plate orientation. On the other hand, typical levels of atmospheric turbulence lead to tilt angles that are similar to those estimated from the glint observation.


2005 ◽  
Vol 13 ◽  
pp. 729-729
Author(s):  
Akira Fujiwara ◽  
Masanao Abe ◽  
Hajime Yano

MUSES-C is launched in May 2003, and arrives in the vicinity of a near-Earth asteroid (25143)1998 SF36 in June 2005. The spectral type is S and its diameter is 300-600 m. During four months stay multi-band imaging, near-infrared spectra, and X-ray spectra will be taken at the nominal altitude of about 6km above the asteroid surface.. Sampling of the surface material will be made at two different locations. The total mass collected will be about 1 g. A miniature hopping lander on which imaging cameras are boarded will be dropped onto the surface. The sample will be returned to the earth in June 2007. These methods, the close-up global observation from the spacecraft, in situ observation from the lander, and detailed analysis of the returned sample, can, as well as ground-based observation of the targeted asteroid, provide information of surface material distribution in various scales, and also provide powerful benchmarks to interpretation of spectroscopic data obtained through ground-based observation of S-type asteroids.


2018 ◽  
Vol 8 ◽  
pp. A54 ◽  
Author(s):  
Benjamin Grison ◽  
Jan Souček ◽  
Vratislav Krupar ◽  
David Píša ◽  
Ondrej Santolík ◽  
...  

The CDPP propagation tool is used to propagate interplanetary coronal mass ejections (ICMEs) observed at Mercury by MESSENGER to various targets in the inner solar system (VEX, ACE, STEREO-A and B). The deceleration of ICME shock fronts between the orbit of Mercury and 1 AU is studied on the basis of a large dataset. We focus on the interplanetary medium far from the solor corona, to avoid the region where ICME propagation modifications in velocity and direction are the most drastic. Starting with a catalog of 61 ICMEs recorded by MESSENGER, the propagation tool predicts 36 ICME impacts with targets. ICME in situ signatures are investigated close to predicted encounter times based on velocities estimated at MESSENGER and on the default propagation tool velocity (500 km s−1). ICMEs are observed at the targets in 26 cases and interplanetary shocks (not followed by magnetic ejecta) in two cases. Comparing transit velocities between the Sun and MESSENGER ($ {\bar{v}}_{\mathrm{SunMess}}$) and between MESSENGER and the targets ($ {\bar{v}}_{\mathrm{MessTar}}$), we find an average deceleration of 170 km s−1 (28 cases). Comparing $ {\bar{v}}_{\mathrm{MessTar}}$ to the velocities at the targets (v Tar), average ICME deceleration is about 160 km s−1 (13 cases). Our results show that the ICME shock deceleration is significant beyond Mercury’s orbit. ICME shock arrival times are predicted with an average accuracy of about six hours with a standard deviation of eleven hours. Focusing on two ICMEs detected first at MESSENGER and later on by two targets illustrates our results and the variability in ICME propagations. The shock velocity of an ICME observed at MESSENGER, then at VEX and finally at STEREO-B decreases all the way. Predicting arrivals of potentially effective ICMEs is an important space weather issue. The CDPP propagation tool, in association with in situ measurements between the Sun and the Earth, can permit to update alert status of such arrivals.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Author(s):  
K. Fukushima ◽  
N. Kohyama ◽  
A. Fukami

A film-sealed high resolution environmental cell(E.C) for observing hydrated materials had been developed by us(l). Main specification of the E.C. is as follows: 1) Accelerated voltage; 100 kV. 2) Gas in the E.C.; saturated water vapour with carrier gas of 50 Torr. 3) Thickness of gas layer; 50 μm. 4) Sealing film; evaporated carbon film(20 nm thick) with plastic microgrid. 5) Resolving power; 1 nm. 6) Transmittance of electron beam; 60% at 100 kV. The E.C. had been successfully applied to the study of hydrated halloysite(2) (3). Kaolin minerals have no interlayer water and are basically non-expandable but form intercalation compounds with some specific chemicals such as hydrazine, formamide and etc. Because of these compounds being mostly changed in vacuum, we tried to reveal the structure changes between in wet air and in vacuum of kaolin minerals intercalated with hydrazine and of hydrated state of montmori1lonite using the E.C. developed by us.


2013 ◽  
Vol 133 (12) ◽  
pp. 350-357
Author(s):  
Yuta Nakashima ◽  
Ryo Monji ◽  
Katsuya Sato ◽  
Kazuyuki Minami

Sign in / Sign up

Export Citation Format

Share Document