Synoptic climatology of southern Indian Ocean and paleoclimate proxy interpretation

Author(s):  
Danielle Udy ◽  
Tessa Vance ◽  
Anthony Kiem ◽  
Neil Holbrook ◽  
Mark Curran

<p>Weather systems in the southern Indian Ocean drive synoptic-scale precipitation, temperature and wind variability in East Antarctica, sub-Antarctic islands and southern Australia.  Over seasonal to decadal timescales, the mean condition associated with combinations of these synoptic weather patterns (e.g., extratropical cyclones, fronts and regions of high pressure) is often referred to as variability in the westerly wind belt or the Southern Annular Mode (SAM). The westerly wind belt is generally considered to be zonally symmetric around Antarctica however, on a daily timescale this is not the case. To capture the daily variability of regional weather systems, we used synoptic typing (Self-Organising Maps) to group weather patterns based on similar features, which are often lost when using monthly or seasonal mean fields. We identified nine key regional weather types based on anomaly pattern and strength. These include four meridional nodes, three mixed nodes, one zonal node and one transitional node. The meridional nodes are favourable for transporting warm, moist air masses to the subantarctic and Antarctic region, and are associated with increased precipitation and temperature where the systems interact with the Antarctic coastline.  These nodes have limited association with the SAM, especially during austral spring.  In contrast, the zonal and mixed nodes were strongly correlated with the SAM however, the regional synoptic representation of SAM positive conditions is not zonally symmetric and is represented by three separate nodes.  These different types of SAM positive conditions mean that the commonly used hemispheric Marshall index often fails to capture the regional variability in surface weather conditions in the southern Indian Ocean. Our results show the importance of considering different synoptic set ups of SAM conditions, particularly SAM positive, and identify conditions that are potentially missed by SAM variability (e.g., extreme precipitation events). Our results are particularly important to consider when interpreting SAM or westerly wind belt reconstructions in the study region (from ice cores, tree rings, or lake sediments).  Here we present a case study using the synoptic typing results to enhance our understanding of the Law Dome (East Antarctica) ice core record, focussing on links to large scale modes of climate variability and Australian hydroclimate.  These results enhance the usefulness of ice core proxies in coastal East Antarctica and assist with determining where and how it is appropriate to use coastal East Antarctic ice core records for reconstructions of large scale modes of climate variability (e.g. SAM and ENSO) and remote hydroclimate conditions.</p>

2021 ◽  
Author(s):  
Margaret Harlan ◽  
Helle Astrid Kjær ◽  
Tessa Vance ◽  
Paul Vallelonga ◽  
Vasileios Gkinis ◽  
...  

<p>The Mount Brown South (MBS) ice core is an approximately 300-meter-long ice core, drilled in 2016-2017 to the south of Mount Brown, Wilhelm II Land, East Antarctica. This location in East Antarctica was chosen as it produces an ice core with well-preserved sub-annual records of both chemistry and isotope concentrations, spanning back over 1000 years. MBS is particularly well suited to represent climate variations of the Indian Ocean sector of Antarctica, and to provide information about regional volcanism in the Southern Indian Ocean region.</p><p>A section of ice spanning the length of the MBS core was melted as part of the autumn 2019 continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. During this campaign, measurements were conducted for chemistry and impurities contained in the ice, in addition to water isotopes. The data measured in Copenhagen include measurements of H<sub>2</sub>O<sub>2,</sub> pH, electrolytic conductivity, and NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>, and Na<sup>+</sup> ions, in addition to insoluble particulate concentrations and size distribution measured using an Abakus laser particle counter.</p><p>Here, we present an overview of the CFA chemistry and impurity data, as well as preliminary investigations into the size distribution of insoluble particles and the presence of volcanic material within the ice. These initial chemistry and particulate size distribution data sets are useful in order to identify sections of the MBS core to subject to further analysis to increase our understanding of volcanic activity in the Southern Indian Ocean region.</p>


2021 ◽  
Author(s):  
◽  
Florence Isaacs

<p><b>​​Antarctica’s sea ice cover is an important component in the global climate system. The variability and recent trends of sea ice concentration are, however, not accurately reproduced by models. Evaluating model performance is hampered because the processes that determine sea ice distribution are not yet well understood, particularly in the East Antarctic region. Here I explore the relationships between recent climate variability and sea ice around East Antarctica, the spatial variability in these relationships, and the impacts that these may have on other aspects of the climate and cryosphere. To achieve this, I analysed satellite-derived HadlSST sea ice concentration (SIC) alongside ERA5 atmospheric reanalysis data for the period between 1979-2018.</b></p> <p>I found that variability in sea ice coverage around East Antarctica was affected by El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM), and Zonal Wave 3 (ZW3). Additionally, I found that the influence of each of these modes varied spatially and temporally, and that sea ice variability affected how regional scale climate responded to changes in large-scale circulation. Summer and autumn SIC around Dronning Maud Land between 10°E and 70°E exhibited a statistically significant negative correlation with the Niño 3.4 index. Analysis of ERA5 data suggests that a southward‐propagating atmospheric wave train triggered by SST anomalies in the tropical Pacific extends into Dronning Maud Land and alters sea ice concentration by encouraging meridional airflow. Shifts in meridional flow in Dronning Maud Land affected sea ice thermodynamically, by altering local heat transport and in turn altering sea ice formation and melt. </p> <p>Sea ice around the Western Pacific sector (WPS) of East Antarctica showed a significant association with variability in the IOD and the SAM. The IOD was correlated with SIC in all seasons but summer. The IOD-SIC relationship is likely driven by an IOD-associated atmospheric wave-train which propagates polewards from the tropical Indian Ocean to Wilkes Land, altering regional circulation and in turn affecting SIC through changes to local climate and sea ice transport. The correlation between WPS SIC and the SAM shifts from positive in summer and autumn to negative in winter and spring, and is likely due to the influence of the SAM on katabatic winds and coastal polynyas, which in turn affect SIC. </p> <p>A significant correlation was observed between SIC variability around East Antarctica and precipitation variability across the continent and the near-coastal Southern Ocean. Further analysis showed that SIC affected how continental precipitation responded to large-scale atmospheric circulation, including modes such as ZW3 and the SAM. Specifically, increased southward moisture flux was only associated with increased precipitation in the inland coastal regions of the continent when SIC was anomalously low. These findings suggest that any future decrease in sea ice may result in greater coupling of climate variability with continental precipitation.</p>


2021 ◽  
Vol 17 (5) ◽  
pp. 1795-1818
Author(s):  
Camilla K. Crockart ◽  
Tessa R. Vance ◽  
Alexander D. Fraser ◽  
Nerilie J. Abram ◽  
Alison S. Criscitiello ◽  
...  

Abstract. Paleoclimate archives, such as high-resolution ice core records, provide a means to investigate past climate variability. Until recently, the Law Dome (Dome Summit South site) ice core record remained one of few millennial-length high-resolution coastal records in East Antarctica. A new ice core drilled in 2017/2018 at Mount Brown South, approximately 1000 km west of Law Dome, provides an additional high-resolution record that will likely span the last millennium in the Indian Ocean sector of East Antarctica. Here, we compare snow accumulation rates and sea salt concentrations in the upper portion (∼ 20 m) of three Mount Brown South ice cores and an updated Law Dome record over the period 1975–2016. Annual sea salt concentrations from the Mount Brown South site record preserve a stronger signal for the El Niño–Southern Oscillation (ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, Southern Oscillation Index). The Mount Brown South site record and Law Dome record preserve inverse signals for the ENSO, possibly due to longitudinal variability in meridional transport in the southern Indian Ocean, although further analysis is needed to confirm this. We suggest that ENSO-related sea surface temperature anomalies in the equatorial Pacific drive atmospheric teleconnections in the southern mid-latitudes. These anomalies are associated with a weakening (strengthening) of regional westerly winds to the north of Mount Brown South that correspond to years of low (high) sea salt deposition at Mount Brown South during La Niña (El Niño) events. The extended Mount Brown South annual sea salt record (when complete) may offer a new proxy record for reconstructions of the ENSO over the recent millennium, along with improved understanding of regional atmospheric variability in the southern Indian Ocean, in addition to that derived from Law Dome.


2003 ◽  
Vol 21 (2) ◽  
pp. 153-166 ◽  
Author(s):  
V. Masson-Delmotte ◽  
M. Delmotte ◽  
V. Morgan ◽  
D. Etheridge ◽  
T. van Ommen ◽  
...  

2021 ◽  
Vol 34 (3) ◽  
pp. 883-899
Author(s):  
Danielle G. Udy ◽  
Tessa R. Vance ◽  
Anthony S. Kiem ◽  
Neil J. Holbrook ◽  
Mark A. J. Curran

AbstractWeather systems in the southern Indian Ocean (SIO) drive synoptic-scale precipitation variability in East Antarctica and southern Australia. Improved understanding of these dynamical linkages is beneficial to diagnose long-term climate changes from climate proxy records as well as informing regional weather and climate forecasts. Self-organizing maps (SOMs) are used to group daily 500-hPa geopotential height (z500; ERA-Interim) anomalies into nine regional synoptic types based on their dominant patterns over the SIO (30°–75°S, 40°–180°E) from January 1979 to October 2018. The pattern anomalies represented include four meridional, three mixed meridional–zonal, one zonal, and one transitional node. The frequency of the meridional nodes shows limited association with the phase of the southern annular mode (SAM), especially during September–November. The zonal and mixed patterns were nevertheless strongly and significantly correlated with SAM, although the regional synoptic representation of SAM+ conditions was not zonally symmetric and was represented by three separate nodes. We recommend consideration of how different synoptic conditions vary the atmospheric representation of SAM+ in any given season in the SIO. These different types of SAM+ mean a hemispheric index fails to capture the regional variability in surface weather conditions that is primarily driven by the synoptic variability rather than the absolute polarity of the SAM.


2021 ◽  
Author(s):  
◽  
Florence Isaacs

<p><b>​​Antarctica’s sea ice cover is an important component in the global climate system. The variability and recent trends of sea ice concentration are, however, not accurately reproduced by models. Evaluating model performance is hampered because the processes that determine sea ice distribution are not yet well understood, particularly in the East Antarctic region. Here I explore the relationships between recent climate variability and sea ice around East Antarctica, the spatial variability in these relationships, and the impacts that these may have on other aspects of the climate and cryosphere. To achieve this, I analysed satellite-derived HadlSST sea ice concentration (SIC) alongside ERA5 atmospheric reanalysis data for the period between 1979-2018.</b></p> <p>I found that variability in sea ice coverage around East Antarctica was affected by El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM), and Zonal Wave 3 (ZW3). Additionally, I found that the influence of each of these modes varied spatially and temporally, and that sea ice variability affected how regional scale climate responded to changes in large-scale circulation. Summer and autumn SIC around Dronning Maud Land between 10°E and 70°E exhibited a statistically significant negative correlation with the Niño 3.4 index. Analysis of ERA5 data suggests that a southward‐propagating atmospheric wave train triggered by SST anomalies in the tropical Pacific extends into Dronning Maud Land and alters sea ice concentration by encouraging meridional airflow. Shifts in meridional flow in Dronning Maud Land affected sea ice thermodynamically, by altering local heat transport and in turn altering sea ice formation and melt. </p> <p>Sea ice around the Western Pacific sector (WPS) of East Antarctica showed a significant association with variability in the IOD and the SAM. The IOD was correlated with SIC in all seasons but summer. The IOD-SIC relationship is likely driven by an IOD-associated atmospheric wave-train which propagates polewards from the tropical Indian Ocean to Wilkes Land, altering regional circulation and in turn affecting SIC through changes to local climate and sea ice transport. The correlation between WPS SIC and the SAM shifts from positive in summer and autumn to negative in winter and spring, and is likely due to the influence of the SAM on katabatic winds and coastal polynyas, which in turn affect SIC. </p> <p>A significant correlation was observed between SIC variability around East Antarctica and precipitation variability across the continent and the near-coastal Southern Ocean. Further analysis showed that SIC affected how continental precipitation responded to large-scale atmospheric circulation, including modes such as ZW3 and the SAM. Specifically, increased southward moisture flux was only associated with increased precipitation in the inland coastal regions of the continent when SIC was anomalously low. These findings suggest that any future decrease in sea ice may result in greater coupling of climate variability with continental precipitation.</p>


2020 ◽  
Author(s):  
Takeshi Izumo ◽  
Maratt Satheesan Swathi ◽  
Matthieu Lengaigne ◽  
Jérôme Vialard ◽  
Dr Ramesh Kumar

&lt;p&gt;A strong Low-Level Jet (LLJ), also known as the Findlater jet, develops over the Arabian Sea during the Indian summer monsoon. This jet is an essential source of moisture for monsoonal rainfall over the densely-populated Indian subcontinent and is a key contributor to the Indian Ocean oceanic productivity by sustaining the western Arabian Sea upwelling systems. The LLJ intensity fluctuates intraseasonally within the ~20- to 90-day band, in relation with the northward-propagating active and break phases of the Indian summer monsoon. Our observational analyses reveal that these large-scale regional convective perturbations&amp;#160; only explain about half of the intraseasonal LLJ variance, the other half being unrelated to large-scale convective perturbations over the Indian Ocean. We show that convective fluctuations in two regions outside the Indian Ocean can remotely force a LLJ intensification, four days later. Enhanced atmosphericdeep convection over the northwestern tropical Pacific yields westerly wind anomalies that propagate westward to the Arabian Sea as baroclinic atmospheric Rossby Waves. Suppressed convection over the eastern Pacific / North American monsoon region yields westerly wind anomalies that propagate eastward to the Indian Ocean as dry baroclinic equatorial Kelvin waves. Those largely independent remote influences jointly explain ~40% of the intraseasonal LLJ variance that is not related to convective perturbations over the Indian Ocean (i.e. ~20% of the total), with the northwestern Pacific contributing twice as much as the eastern Pacific. Taking into account these two remote influences should thus enhance the ability to predict the LLJ.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Related reference:&amp;#160;Swathi M.S, Takeshi Izumo, Matthieu Lengaigne, J&amp;#233;r&amp;#244;me Vialard and M.R. Ramesh Kumar:Remote influences on the Indian monsoon Low-Level Jet intraseasonal variations, accepted in Climate Dynamics.&lt;/p&gt;


2020 ◽  
Author(s):  
Matthieu Lengaigne ◽  

&lt;p&gt;Ocean-atmosphere interactions in the tropics have a profound influence on the climate system. El Ni&amp;#241;o&amp;#8211;Southern Oscillation (ENSO), which is spawned in the tropical Pacific, is the most prominent and well-known year-to-year variation on Earth. Its reach is global, and its impacts on society and the environment are legion. Because ENSO is so strong, it can excite other modes of climate variability in the Indian Ocean by altering the general circulation of the atmosphere. However, ocean-atmosphere interactions internal to the Indian Ocean are capable of generating distinct modes of climate variability as well. Whether the Indian Ocean can feedback onto Atlantic and Pacific climate has been an on-going matter of debate. We are now beginning to realize that the tropics, as a whole, are a tightly inter-connected system, with strong feedbacks from the Indian and Atlantic Oceans onto the Pacific. These two-way interactions affect the character of ENSO and Pacific decadal variability and shed new light on the recent hiatus in global warming.&lt;/p&gt;&lt;p&gt;Here we review advances in our understanding of pantropical interbasins climate interactions with the Indian Ocean and their implications for both climate prediction and future climate projections. ENSO events force changes in the Indian Ocean than can feed back onto the Pacific. Along with reduced summer monsoon rainfall over the Indian subcontinent, a developing El Ni&amp;#241;o can trigger a positive Indian Ocean Dipole (IOD) in fall and an Indian Ocean Basinwide (IOB) warming in winter and spring. Both IOD and IOB can feed back onto ENSO. For example, a positive IOD can favor the onset of El Ni&amp;#241;o, and an El Ni&amp;#241;o&amp;#8211;forced IOB can accelerate the demise of an El Ni&amp;#241;o and its transition to La Ni&amp;#241;a. These tropical interbasin linkages however vary on decadal time scales. Warming during a positive phase of Atlantic Multidecadal Variability over the past two decades has strengthened the Atlantic forcing of the Indo-Pacific, leading to an unprecedented intensification of the Pacific trade winds, cooling of the tropical Pacific, and warming of the Indian Ocean. These interactions forced from the tropical Atlantic were largely responsible for the recent hiatus in global surface warming.&lt;/p&gt;&lt;p&gt;Climate modeling studies to address these issues are unfortunately compromised by pronounced systematic errors in the tropics that severely suppress interactions with the Indian and Pacific Oceans. As a result, there could be considerable uncertainty in future projections of Indo-Pacific climate variability and the background conditions in which it is embedded. Projections based on the current generation of climate models suggest that Indo-Pacific mean-state changes will involve slower warming in the eastern than in the western Indian Ocean. Given the presumed strength of the Atlantic influence on the pantropics, projections of future climate change could be substantially different if systematic model errors in the Atlantic were corrected. There is hence tremendous potential for improving seasonal to decadal climate predictions and for improving projections of future climate change in the tropics though advances in our understanding of the dynamics that govern interbasin linkages.&lt;/p&gt;


2004 ◽  
Vol 51 (2) ◽  
pp. 307-332 ◽  
Author(s):  
C.H Pilskaln ◽  
S.J Manganini ◽  
T.W Trull ◽  
L Armand ◽  
W Howard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document