Efficiency of dust control products in suppression of wind-induced dust emission from soils

Author(s):  
Itzhak Katra

<p>Surfaces of disturbed soils are subjected to dust PM10 (particulate matter < 10 µm) emission by wind process regardless of human activities such as vehicles (wheels) traveling. However, there is little quantitative information on the efficiency of dust control products in suppression of wind-induced dust emission. The study aimed to fill this clear gap using wind-tunnel experiments under laboratory and field conditions. Diverse dust control products of synthetic and organic polymers (Lignin, Resin, Bitumen, PVA, Brine) were tested. In the first stage, the products were tested under controlled-laboratory conditions. In the second stage, the products were tested in unpaved roads of an active quarry after the transportation of quarry-haul trucks in two time points after the product application. The results show that in most of the plots the dust emission increases with the wind velocity. PM10 fluxes from the road surface in each plot were calculated to determine the effectiveness of the dust control products. Some products significantly reduced the dust emission, especially the magnesium chloride brine. Additional experiments revealed that the brine can be applied with reduced amount than that of the recommended amount while keeping on low dust emission.</p>

2019 ◽  
Vol 9 (23) ◽  
pp. 5204 ◽  
Author(s):  
Katra

Surfaces of unpaved roads are subjected to dust PM10 (particulate matter < 10 µm) emission by wind process regardless of vehicles (wheels) transport. However, there is little quantitative information on wind-induced dust emission from unpaved roads and the efficiency of diverse dust control products. The study aimed to fill this clear applied scientific gap using wind-tunnel experiments under laboratory and field conditions. The wind-tunnel complies with aerodynamics requirements and is adjusted to dynamic similitude by appropriately scaling all variables that affect dust transport. The results of the control sample (no-treatment) clearly show that dust emission by wind from unpaved road could be a substantial contribution to mass transfer and air pollution, and thus should be considered. Diverse dust control products of synthetic and organic polymers (Lignin, Resin, Bitumen, PVA, Brine) were tested. In the first stage, the products were tested under controlled-laboratory conditions. The results enabled quantitative assessment of the product efficacy in wind erosion without the impact of vehicle transport. In the second stage, the products were tested in field experiment in an active quarry, in which the products were applied on plots along the road. The field experiment was conducted after transportation of the quarry-haul trucks in two time points: several days after the application, and several weeks after the application. The results show that in most of the plots the dust emission increases with the wind velocity. PM10 fluxes from the road surface in each plot were calculated to determine the effectiveness of the dust control products. Some products significantly reduced dust emission from quarry roads, especially when using the Hydrous magnesium chloride (Brine). Additional experiments revealed that such Brine can be applied with reduced amounts and still keeping on low emission.


2020 ◽  
Vol 66 (No. 5) ◽  
pp. 218-225
Author(s):  
Aidin Parsakhoo ◽  
Seyed Ataollah Hosseini ◽  
Majid Lotfalian ◽  
Jahangir Mohammadi ◽  
Meysam Salarijazi

In this study, some environmentally friendly anti-dust agents including sugar cane molasses, polyacrylamide and bentonite were used to control dust emission from the forest road surface within the 3, 9, 27 and 81-day timeframe. A rear-mounted spray system and dust collector devices were used for implementation of treatments and dust emission recording, respectively. The results showed that emitted dust tended to decrease with the increase of anti-dust agent concentrations. Moreover, the emitted dust started to decrease with time, with minimum reduction efficiency at the end of the 81st day. More than half of road surface aggregates had the size smaller than 10 µm that were aggregated by the application of molasses and polyacrylamide. The size of 70% of the road surface fines increased to more than <br />50 µm. Bentonite affected negatively road surface materials and caused fine aggregates to increase. It is concluded that the amount of fine aggregates in surfacing materials, rainfall occurrence, and type and dosage of anti-dust agents play an important role in the effectiveness and longevity of treatment


2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Aidin Parsakhoo ◽  
Seyed Ataollah Hosseini ◽  
Majid Lotfalian ◽  
Jahangir Mohammadi ◽  
Meysam Salarijazi

Dust is often generated from the dry surfaces of unpaved forest roads as a result of vehicular traffic. Dust particles can negatively affect vegetative growth, water quality and road traffic quality. In this study, some environmental friendly anti-dust agents including sugar cane molasses, polyacrylamide (PAM) and bentonite were used to control dust emission from the road surface under three different concentrations within the 3, 9, 27 and 81 day timeframe. Rear-mounted spray system and dustometer devices were used for implementation of treatments and dust emission recording, respectively. Leaf samples were collected from trees adjacent to road to measure the dust deposited on the leaves by centrifuging dust solution. The results showed that molasses achieved higher efficiencies in term of dust reduction and cost effectiveness than those of PAM and bentonite in Loveh forest, where high levels of fines are present in the road surface materials. 2% and 4% PAM were the most efficient dosages in terms of dust control and cost effectiveness in Shastkalateh and Kouhmian forests, respectively. It was detected that in all sites most of the dust emitted from the road surface was deposited on the leaves of Carpinus betulus L. and Alnus subcordata L., while smooth surface of the leaves retained lower amount of dust in Parrotia persica CAM. It is concluded that the amount of fine aggregates in surfacing materials, type and dosage of anti-dust agent play an important role in the effectiveness and longevity of treatment.


2021 ◽  
Vol 13 (14) ◽  
pp. 7797
Author(s):  
Muhammad Khan ◽  
Numan Khan ◽  
Miroslaw J. Skibniewski ◽  
Chansik Park

Dust generation is generally considered a natural process in construction sites; ergo, workers are exposed to health issues due to fine dust exposure during construction work. The primary activities in the execution of construction work, such as indoor concrete and mortar mixing, are investigated to interrogate and understand the critical high particulate matter concentrations and thus health threats. Two low-cost dust sensors (Sharp GP2Y1014AU0F and Alphasense OPC N2) without implementing control measures to explicitly evaluate, compare and gauge them for these construction activities were utilized. The mean exposures to PM10, PM2.5 and PM1 during both activities were 3522.62, 236.46 and 47.62 µg/m3 and 6762.72, 471.30 and 59.09 µg/m3, respectively. The results show that PM10 and PM2.5 caused during the concrete mixing activity was approximately double compared to the mortar. The Latin Hypercube Sampling method is used to analyze the measurement results and to predict the exposure concentrations. The high dust emission and exposure from mixing activities fail to meet the World Health Organization and Health and Safety Commission standards for environmental exposure. These findings will leverage the integration of low-cost dust sensors with Building Information Modelling (BIM) to formulate a digital twin for automated dust control techniques in the construction site.


2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Author(s):  
G.I. Korshunov ◽  
◽  
A.M. Safina ◽  
A.M. Karimov ◽  
◽  
...  

At the deposits of the Krasnoyarsk Territory, the actual concentration of the suspended dust is 60–83 mg/m3. The search for efficient ways of reducing dust emission and dust suppression remains an urgent task, since fine dust has a negative effect on the health of enterprise employees and on mining equipment reducing its service life. Full-scale measurements were conducted related to the dust content and dispersed composition of the aerosols. The dust content was measured by counting method with the use of CEM DT-9880 dust particle counter. The measurements were conducted at the points located at different distances from the road of the section. The content of the most dangerous fraction PM2.5 was 48 % of the total amount of fine dust or 30–40 mg/m3, while the maximum permissible concentration for this fraction is 0.16 mg/m3. The employees who constantly work near the automotive haul roads and the ruins of an exploded rock mass are exposed to the strongest effects of dust emissions on the respiratory organs. To reduce the dust load on the employees of the mining enterprise, it is most appropriate to deal primarily with the dust emitted from the open pit roads, since this will help to reduce the dust load by 30–40 %. The permissible length of service for the operator of the loading equipment of one of the open-pit mines of the Krasnoyarsk Territory was calculated: it will be 9 years, and not 17, as was obtained earlier — without considering the actual content of the respirable dust. With the most rational parameters of drilling and blasting operations and using all methods to reduce dust formation, it is possible to reduce the dust emission by 15–20 %.


2016 ◽  
Author(s):  
Jie Zhang ◽  
Zhenjiao Teng ◽  
Ning Huang ◽  
Lei Guo ◽  
Yaping Shao

Abstract. Wind-tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analysed in detail, and the measurements are used to test published dust models. It is found that flow conditions, surface particle motions (saltation and creep), soil dust content and ground obstacles all strongly affect dust emission, causing dust emission rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 minutes of our wind-tunnel runs. While aerodynamic entrainment is suppressed by dust supply limit, surface renewal through the motion of surface particles is found to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.


2020 ◽  
Vol 20 (12) ◽  
pp. 7393-7410 ◽  
Author(s):  
Jiani Tan ◽  
Joshua S. Fu ◽  
Gregory R. Carmichael ◽  
Syuichi Itahashi ◽  
Zhining Tao ◽  
...  

Abstract. This study compares the performance of 12 regional chemical transport models (CTMs) from the third phase of the Model Inter-Comparison Study for Asia (MICS-Asia III) on simulating the particulate matter (PM) over East Asia (EA) in 2010. The participating models include the Weather Research and Forecasting model coupled with Community Multiscale Air Quality (WRF-CMAQ; v4.7.1 and v5.0.2), the Regional Atmospheric Modeling System coupled with CMAQ (RAMS-CMAQ; v4.7.1 and v5.0.2), the Weather Research and Forecasting model coupled with chemistry (WRF-Chem; v3.6.1 and v3.7.1), Goddard Earth Observing System coupled with chemistry (GEOS-Chem), a non-hydrostatic model coupled with chemistry (NHM-Chem), the Nested Air Quality Prediction Modeling System (NAQPMS) and the NASA-Unified WRF (NU-WRF). This study investigates three model processes as the possible reasons for different model performances on PM. (1) Models perform very differently in the gas–particle conversion of sulfur (S) and oxidized nitrogen (N). The model differences in sulfur oxidation ratio (50 %) are of the same magnitude as that in SO42- concentrations. The gas–particle conversion is one of the main reasons for different model performances on fine mode PM. (2) Models without dust emission modules can perform well on PM10 at non-dust-affected sites but largely underestimate (up to 50 %) the PM10 concentrations at dust sites. The implementation of dust emission modules in the models has largely improved the model accuracies at dust sites (reduce model bias to −20 %). However, both the magnitude and distribution of dust pollution are not fully captured. (3) The amounts of modeled depositions vary among models by 75 %, 39 %, 21 % and 38 % for S wet, S dry, N wet and N dry depositions, respectively. Large inter-model differences are found in the washout ratios of wet deposition (at most 170 % in India) and dry deposition velocities (generally 0.3–2 cm s−1 differences over inland regions).


Author(s):  
Daša Fullová ◽  
Dušan Jandačka ◽  
Daniela Ďurčanská ◽  
Adriana Eštoková ◽  
Jitka Hegrová

Sign in / Sign up

Export Citation Format

Share Document