​Slip modes and interaction in a simplified strike-slip fault system with increasing geometrical complexity

Author(s):  
Michael Rudolf ◽  
Joscha Podlesny ◽  
Esther Heckenbach ◽  
Matthias Rosenau ◽  
Anne Glerum ◽  
...  

<p>The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial exten<span><span>t</span></span> and slip velocities. The exact relationship is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).</p><p>One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. We test various settings in terms of fault heterogeneity and geometrical complexity with a scaled physical model. The experimental results are then validated and benchmarked through multi-scale numerical simulations. We describe <span><span>the</span></span> system using <span><span>a</span></span> rate-and-state frictional framework and introduce on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and numerical simulation as far as they can be determined or realized experimentally (a-b, v<sub>load</sub>, S<sub>hmax</sub>, S<sub>hmin</sub>, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces <1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks which is similar to the frictional behaviour of natural faults. We add heterogeneity to the fault surface by varying the fault area that is velocity weakening using grease. Geometrical complexity is implemented using conjugated or parallel sets of additional faults with the same characteristics.</p><p>We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In a geometrically simple strike-slip model the recurrence behaviour and magnitude follows straightforward scaling relations in accordance with existing studies. If geometrical complexity is added to the model we observe clustering and variable recurrence that differ from the simpler geometry. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.</p>

2020 ◽  
Author(s):  
Michael Rudolf ◽  
Joscha Podlesny ◽  
Matthias Rosenau ◽  
Ralf Kornhuber ◽  
Onno Oncken

<p>The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial extend and slip velocities. As all slip modes are related to earthquakes, the understanding of the relationships between the different slip modes and the underlying mechanisms is crucial to assess earthquake hazards in various regions. The exact relation is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).</p><p>One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. Using a scaled physical model we test various settings in terms of fault heterogeneity and geometrical complexity. The experimental results are then validated and benchmarked using multi-scale numerical simulations. We describe the system using the rate-and-state frictional framework and introduce the on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and simulation as far as they can be determined or realized experimentally (a-b, v<sub>load</sub>, S<sub>hmax</sub>, S<sub>hmin</sub>, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces <1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks. The major advantage of using neoprene over other materials, such as gelatine or polyurethane foams, is that it has closed pores and thus exhibits a more favourable Poisson’s ratio in comparison with rocks and shows better elastic strain propagation in the block. Furthermore, all used materials are inert and do not change their properties over time.</p><p>We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In this contribution we will highlight the material properties, experimental results and used methodologies to monitor and process the experimental data. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.</p>


2013 ◽  
Vol 53 (1) ◽  
pp. 255 ◽  
Author(s):  
Ernest Swierczek ◽  
Cui Zhen-dong ◽  
Simon Holford ◽  
Guillaume Backe ◽  
Rosalind King ◽  
...  

The Rosedale Fault System (RFS) bounds the northern margin of the Gippsland Basin on the Southern Australian Margin. It comprises an anastomosing system of large, Cretaceous-age normal faults that have been variably reactivated during mid Eocene-Recent inversion. A number of large oil and gas fields are located in anticlinal traps associated with the RFS, and in the future these fields may be considered as potential storage sites for captured CO2. Given the evidence for geologically recent fault reactivation along the RFS, it is thus necessary to evaluate the potential impacts of CO2 injection on fault stability. The analysis and interpretation of 3D seismic data allowed the authors to create a detailed structural model of the western section of the RFS. Petroleum geomechanical data indicates that the in-situ stress in this region is characterised by hybrid strike-slip to reverse faulting conditions where SHmax (40.5 MPa/km) > SV (21 MPa/km) ~ Shmin (20 MPa/km). The authors performed geomechanical modelling to assess the likelihood of fault reactivation assuming that both strike-slip and reverse-stress faulting regimes exist in the study area. The authors’ results indicate that the northwest to southeast and east-northeast to west-southwest trending segments of the RFS are presently at moderate and high risks of reactivation. The authors’ results highlight the importance of fault surface geometry in influencing fault reactivation potential, and show that detailed structural models of potential storage sites must be developed to aid risk assessments before injection of CO2.


Geosphere ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 875-889 ◽  
Author(s):  
Michele L. Cooke ◽  
Kevin Toeneboehn ◽  
Jennifer L. Hatch

Abstract Oblique convergent margins host slip-partitioned faults with simultaneously active strike-slip and reverse faults. Such systems defy energetic considerations that a single oblique-slip fault accommodates deformation more efficiently than multiple faults. To investigate the development of slip partitioning, we record deformation throughout scaled experiments of wet kaolin over a low-convergence (<30°), obliquely slipping basal dislocation. The presence of a precut vertical weakness in the wet kaolin impacts the morphology of faults but is not required for slip partitioning. The experiments reveal three styles of slip partitioning development delineated by the order of faulting and the extent of slip partitioning. Low-convergence angle experiments (5°) produce strike-slip faults prior to reverse faults. In moderate-convergence experiments (10°–25°), the reverse fault forms prior to the strike-slip fault. Strike-slip faults develop either along existing weaknesses (precut or previous reverse-slip faults) or through the coalescence of new echelon cracks. The third style of local slip partitioning along two simultaneously active dipping faults is transient while global slip partitioning persists. The development of two active fault surfaces arises from changes in off-fault strain pattern after development of the first fault. With early strike-slip faults, off-fault contraction accumulates to produce a new reverse fault. Systems with early lobate reverse faults accommodate limited strike-slip and produce extension in the hanging wall, thereby promoting strike-slip faulting. The observation of persistent slip partitioning under a wide range of experimental conditions demonstrates why such systems are frequently observed in oblique convergence crustal margins around the world.


1979 ◽  
Vol 69 (4) ◽  
pp. 1161-1173
Author(s):  
Stephen Hartzell ◽  
James N. Brune

abstract A moderate strike-slip earthquake (ML = 4.8) occurred on the San Jacinto fault system about 60 km northwest of the Salton Sea on August 2, 1975. Analysis of main shock and aftershock data suggest that stress release during this earthquake took place in two stages. During one stage faulting occurred over a relatively small source area (source radius of ∼0.5 km), with a rapid dislocaton rate (rise time ∼0.1 sec), possibly associated with an asperity on the fault. During the second stage of faulting, the rupture front grew, but at a much slower rate (rise time ∼10 sec), to a final source radius of ∼1.0 km. The above model explains the larger moment estimate based on 20-sec surface waves compared to shorter period body-wave estimates, and also the apparent increase in source dimension with time. The model allows for large stress drops over small source dimensions, but when averaged over the final extent of the rupture plane, stress drops are much lower. The rupture of the asperity is characterized by a moment of 6.5 × 1022 dyne-cm and a stress drop of about 225 bars. The total moment is about 3.0 × 1023 dyne-cm with an averaged stress drop over the fault plane of approximately 90 bars and a dislocation of 25 cm. Observations similar to the ones reported on here have been noted for other earthquakes with a wide range of magnitudes, including: a few large earthquakes in Japan, the 1971 San Fernando earthquake and some of its aftershocks, the 1975 Oroville earthquake, and some swarm events in the Imperial Valley. These observations suggest that a two-stage rupture mechanism may be a fairly common occurrence in shallow faulting and may reflect possible large variations in stress over a length scale of kilometers within the crust.


Author(s):  
Blaž Vičič ◽  
Seyyedmaalek Momeni ◽  
Alessandra Borghi ◽  
Anthony Lomax ◽  
Abdelkrim Aoudia

Abstract The 2019–2020 Southwest Puerto Rico earthquake sequence ruptured multiple faults with several moderate magnitude earthquakes. Here, we investigate the seismotectonics of this fault system using high-precision hypocenter relocation and inversion of the near-field strong motions of the five largest events in the sequence (5.6≤Mw≤6.4) for kinematic rupture models. The Mw 6.4 mainshock occurred on a northeast-striking, southeast-dipping normal fault. The rupture nucleated offshore ∼15 km southeast of Indios at the depth of 8.6 km and extended southwest–northeast and up-dip with an average speed of 1.55 km/s, reaching the seafloor and shoreline after about 8 s. The 6 January 2020 (10:32:23) Mw 5.7 and the 7 January 2020 (11:18:46) Mw 5.8 events occurred on two east–southeast-striking, near-vertical, left-lateral strike-slip faults. However, the 7 January 2020 (08:34:05) Mw 5.6 normal-faulting aftershock, which occurred only 10 min after the Mw 6.4 normal-faulting mainshock, ruptured on a fault with almost the same strike as the mainshock but situated ∼8 km farther east, forming a set of parallel faults in the fault system. On 11 January 2020, an Mw 6.0 earthquake occurred on a north–northeast-striking, westing-dipping fault, orthogonal to the faults hosting the strike-slip earthquakes. We apply template matching for the detection of missed, small-magnitude earthquakes to study the spatial evolution of the main part of the sequence. Using the template-matching results along with Global Positioning System analysis, we image the temporal evolution of a foreshock sequence (Caja swarm). We propose that the swarm and the main sequence were a response to a tectonic transient that most affected the whole Puerto Rico Island.


2020 ◽  
Vol 36 (3) ◽  
pp. 1271-1297
Author(s):  
Kenneth W. Campbell

In this article, I propose a method for estimating the magnitude [Formula: see text] at which subduction megathrust earthquakes are expected to exhibit a break in magnitude scaling of both seismic source dimensions and earthquake ground motions. The methodology is demonstrated by applying it to 79 global subduction zones defined in the literature, including Cascadia. Breakpoint magnitude is estimated from seismogenic interface widths, empirical source scaling relations, and aspect ratios of physically unbounded earthquake ruptures and their uncertainties. The concept stems from the well-established observation that source-dimension and ground motion scaling decreases for shallow continental (primarily strike-slip) earthquakes when rupture exceeds the seismogenic width of the fault. Although a scaling break for megathrust earthquakes is difficult to observe empirically, all of the instrumentally recorded historical [Formula: see text] mega-earthquakes have occurred on subduction zones with [Formula: see text] (8.1–8.9), consistent with an observed break in source scaling relations derived from these same events. The breakpoint magnitudes derived in this study can be used to constrain the magnitude at which the scaling of ground motion is expected to decrease in subduction ground motion prediction equations.


2014 ◽  
Vol 675-677 ◽  
pp. 1421-1424 ◽  
Author(s):  
Zhen Li Fan

For the issue of fault impact on the height of water-flowing fractured zone, the study worked out several damage heights of superincumbent stratum under the influence of different dip angles faults. The research shows that small angle fault influence area is apt to develop a wide range of the plastic zone,and the water-flowing fractured zone of high-angle fault influence area is apt to increase along the fault surface and breakover the aquifers of coal seam roof and floor.


Sign in / Sign up

Export Citation Format

Share Document