Slip modes and interaction in a simplified strike-slip fault system with increasing geometrical complexity

Author(s):  
Michael Rudolf ◽  
Joscha Podlesny ◽  
Matthias Rosenau ◽  
Ralf Kornhuber ◽  
Onno Oncken

<p>The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial extend and slip velocities. As all slip modes are related to earthquakes, the understanding of the relationships between the different slip modes and the underlying mechanisms is crucial to assess earthquake hazards in various regions. The exact relation is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).</p><p>One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. Using a scaled physical model we test various settings in terms of fault heterogeneity and geometrical complexity. The experimental results are then validated and benchmarked using multi-scale numerical simulations. We describe the system using the rate-and-state frictional framework and introduce the on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and simulation as far as they can be determined or realized experimentally (a-b, v<sub>load</sub>, S<sub>hmax</sub>, S<sub>hmin</sub>, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces <1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks. The major advantage of using neoprene over other materials, such as gelatine or polyurethane foams, is that it has closed pores and thus exhibits a more favourable Poisson’s ratio in comparison with rocks and shows better elastic strain propagation in the block. Furthermore, all used materials are inert and do not change their properties over time.</p><p>We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In this contribution we will highlight the material properties, experimental results and used methodologies to monitor and process the experimental data. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.</p>

2021 ◽  
Author(s):  
Michael Rudolf ◽  
Joscha Podlesny ◽  
Esther Heckenbach ◽  
Matthias Rosenau ◽  
Anne Glerum ◽  
...  

<p>The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial exten<span><span>t</span></span> and slip velocities. The exact relationship is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).</p><p>One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. We test various settings in terms of fault heterogeneity and geometrical complexity with a scaled physical model. The experimental results are then validated and benchmarked through multi-scale numerical simulations. We describe <span><span>the</span></span> system using <span><span>a</span></span> rate-and-state frictional framework and introduce on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and numerical simulation as far as they can be determined or realized experimentally (a-b, v<sub>load</sub>, S<sub>hmax</sub>, S<sub>hmin</sub>, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces <1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks which is similar to the frictional behaviour of natural faults. We add heterogeneity to the fault surface by varying the fault area that is velocity weakening using grease. Geometrical complexity is implemented using conjugated or parallel sets of additional faults with the same characteristics.</p><p>We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In a geometrically simple strike-slip model the recurrence behaviour and magnitude follows straightforward scaling relations in accordance with existing studies. If geometrical complexity is added to the model we observe clustering and variable recurrence that differ from the simpler geometry. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.</p>


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


2021 ◽  
Vol 11 (6) ◽  
pp. 2464
Author(s):  
Sha Yang ◽  
Neven Ukrainczyk ◽  
Antonio Caggiano ◽  
Eddie Koenders

Modelling of a mineral dissolution front propagation is of interest in a wide range of scientific and engineering fields. The dissolution of minerals often involves complex physico-chemical processes at the solid–liquid interface (at nano-scale), which at the micro-to-meso-scale can be simplified to the problem of continuously moving boundaries. In this work, we studied the diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective. The dynamic evolution of the solid–liquid interface, during the dissolution process, is numerically simulated by employing the Finite Element Method (FEM) and using the phase–field (PF) approach, the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment (MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated against the experimental results for a congruent dissolution case of NaCl (taken from literature) as well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF method with experimental results demonstrated the importance of the dissolution rate mechanisms, which can be controlled by the interface reaction rate or by the diffusive transport mechanism.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


1996 ◽  
Vol 324 ◽  
pp. 163-179 ◽  
Author(s):  
A. Levy ◽  
G. Ben-Dor ◽  
S. Sorek

The governing equations of the flow field which is obtained when a thermoelastic rigid porous medium is struck head-one by a shock wave are developed using the multiphase approach. The one-dimensional version of these equations is solved numerically using a TVD-based numerical code. The numerical predictions are compared to experimental results and good to excellent agreements are obtained for different porous materials and a wide range of initial conditions.


Author(s):  
Junkui Mao ◽  
Wen Guo ◽  
Zhenxiong Liu ◽  
Jun Zeng

Experiments were carried out to investigate the cooling effectiveness of a lamellar double-decker impingement/effusion structure. Infrared radiation (I.R.) thermal camera was used to measure the temperature on the outside surface of the lamellar double-decker. Experimental results were obtained for a wide range of governing parameters (blowing rate M (0.0017∼0.0066), the ratio of the jet impingement distance to the diameter of film hole H/D (0.5∼1.25), the ratio of the distance between the jet hole and film hole to the diameter of the film hole P/D (0, 3, 4), and the material of double-decker (Steel and Copper)). It was observed that the local cooling effectiveness η varies with all these parameters in a complicated way. All the results show that higher cooling effectiveness η is achieved in larger blowing rate cases. A certain range of H/D and P/D can be designed to result in the maximum cooling effectiveness η. And η is less sensitive to the material type compared with those parameters such as H/D, M and P/D.


Author(s):  
Xiao Cui Wang ◽  
Ji Liang Mo ◽  
Huajiang Ouyang ◽  
Xiao Dong Lu ◽  
Bo Huang ◽  
...  

This work presents an experimental and theoretical combined study of the effects of the elastic rubber blocks with different surface modifications on the friction-induced stick–slip oscillation and wear of a brake pad sample in sliding contact with an automobile brake disc. The experiments are conducted on the customized experimental setup in a pad-on-disc configuration. The experimental results show that (1) the friction system with the plain rubber block still exhibits visible stick–slip oscillation, but the intensity of the stick–slip oscillation is reduced to a certain degree compared with the Original friction system (without rubber block); (2) the grooved rubber blocks display a better ability to reduce the stick–slip oscillation compared with the plain rubber block; (3) the rubber blocks with a vertical groove (perpendicular to the relative velocity) or a horizontal groove (parallel to the relative velocity) or a diagonal groove (45° inclined to the relative velocity) on their surfaces can suppress the stick–slip oscillation more effectively with various degrees of success. The experimental results also reveal the varying effects of the different rubber blocks on wear. To explain the experimental phenomenon reasonably, a theoretical analysis is conducted to investigate the effects of different rubber blocks on both stick–slip oscillation and wear using ABAQUS. Furthermore, the analysis of the contact pressure on the pad interfaces and the deformation of the rubber blocks are studied to provide a possible explanation of the experimental results.


2000 ◽  
Vol 67 (4) ◽  
pp. 720-726
Author(s):  
S. Djerassi

It has been observed that balls pressed between elastic bodies spin when subjected to linear, cyclic motion. This paper proposes an explanation to this phenomenon, based upon the stick-slip theory. To this end, a modified, vectorial formulation of the stick-slip theory is presented. The formulation is applied to a model comprising a ball pressed between pairs of springs and dampers. A computer program based on this formulation is used to predict the resulting motion. Predictions are shown to agree with experimental results. [S0021-8936(01)00701-2]


2021 ◽  
Author(s):  
Hong Gong ◽  
xiongfei wang ◽  
Dongsheng Yang

The <i>dq</i>-frame admittance of closed-loop controlled three-phase converters is a linearized model that is dependent on the operating points of the system. Yet, it is impractical to measure the converter admittance at all operating points. This paper, thus, proposes an approach to estimating the <i>dq</i>-frame admittance of three-phase converters at a wide range of operating points. The method applies multidimensional interpolation to a given set of admittance data, which is measured from the pre-defined operating points. The accuracy of interpolation is then evaluated by using the posterior error estimation method. The number of pre-defined operating points is next adjusted to find a good compromise between the accuracy and efficiency of the approach. Simulations and experimental results verify the effectiveness of the approach.<div><br></div>


Author(s):  
Minoru Chino ◽  
Kenji Takizawa ◽  
Takashi Yabe

This paper provides the experimental results on skimmer and gives some detailed information useful for benchmark test of computer codes that are now able to simulate the fluid-structure interaction. For this purpose, we specially designed the injection system that imposes reproducible rotational speed and injection speed on the skipper. The effect of rotation is discussed by changing rotation speed in a wide range.


Sign in / Sign up

Export Citation Format

Share Document