Centrifuge Experiments of the Initiation of Self-Sustaining Subduction

Author(s):  
Yossi Mart ◽  
Liran Goren ◽  
Einat Aharonov

<p>The post-Triassic age of all oceanic lithospheres indicates the efficiency and the sustainability of lithospheric subduction, which consumes the basaltic seafloor and recirculates it in the upper mantle. Since at present the initiation of subduction is very rare, comprehension of this cardinal process should be carried through modeling – numeric or analog. While deciphering processes through numeric modeling is commonly comprehensive, the analog models can determine major factor that constrain a tectonic procedure. Analog centrifuge experiments were applied to initiate self-sustained modelled subduction, trying to determine the critical factors that trigger its early stages.</p><p>Analytically we presumed that where densities of two lithospheric plates, juxtaposed across a weakness zone, exceed a critical value, then the denser lithosphere eventually will drive underneath the lighter one, provided the friction across the interface is not too high. Consequently, analog experiments were carried out in a centrifuge at acceleration of ca. 1000 g., deforming miniaturized models of three layers representing the asthenosphere, the ductile and the brittle lithosphere. The lithospheres were modeled to include lighter and denser components, juxtaposed along a slightly lubricated contact plane, where the density difference between these components was ca. 200 kg/m<sup>3</sup>. No mechanism of lateral force was applied in the experiment (even though such a vector exists in nature due to the seafloor spreading at the oceanic ridges), to test the possibility of subduction in domains where such a force is minor or non-existent.</p><p>The analog experiments showed that the penetration of the denser modeled lithosphere under the lighter one led to extension and subsequent break-up of the over-riding plate. That break-up generated seawards trench rollback, normal faulting, rifting, and formed proto-back-arc basins. Lateral differential reduction of the friction between the juxtaposed plates led to the development of arcuate subduction zones. The experimental miniaturization, and subsequent numerical and analytical modeling, suggest that the observed deformation in the analog models could be meaningful to the planet as well.</p><p>Constraints of the analog experimentation setting did not enable the modeling of the subduction beyond the initial stages, but there is ground to presume that at depths of 40-50 km, metamorphic processes of the generation of eclogites would change the initial mineralogy on the subducting plate. Reactions with water would convert basalts into metamorphic serpentinites and schists. Higher temperatures and pressures would melt parts of the subducted slab to generate felsic magmas, which would ascend towards the surface diapirically due to their lighter density. Alternately, low availability of H<sub>2</sub>O would gradually alter the oceanic basalt and gabbro into eclogite, which would sink into the mantle due to its increased density.</p>

2021 ◽  
Author(s):  
Nalan Lom ◽  
Abdul Qayyum ◽  
Derya Gürer ◽  
Douwe G. van der Meer ◽  
Wim Spakman ◽  
...  

<p>Iran is a mosaic of continental blocks that are surrounded by Tethyan oceanic relics. Remnants of these oceanic rock assemblages are exposed around the Central Iranian Microcontinent (CIM), discretely along the Sanandaj-Sirjan Zone and in Jaz-Murian. The ophiolite belts surrounding the CIM are mainly assumed to represent narrow back-arc basins that opened in Cretaceous and closed before the Eocene. Although these ophiolites are exposed as small pieces on continental crust today, they represent oceans wide enough to form supra-subduction ophiolites and arc-related magmatic rocks which suggest that their palaeogeographic width was at least some hundreds of kilometers. Current models for the palaeogeographic dimension, opening and closure of these basins are highly schematic. They usually seem plausible in two-dimensional reconstructions, however a single three-dimensional model explaining whole Iran and its surrounding regions has not been fully accomplished.  This is mostly because while the geological record provides constraints on the origin and ages of the subducted ocean floor, it provides limited information about onset and cessation of the subduction and almost no constraints on the dimension of these oceans and the subduction zones that consumed them.</p><p>In this study, we follow a novel approach in estimating the dimension and evolution of these back-arc basin by using seismic tomography. Seismic tomography has revealed that we can image and trace subducted lithosphere relics. Imaged mantle structure is now being used to link sinking slabs with sutures and to define shape of a slab. Systematic comparison of regions where the timing of subduction is reasonably well constrained by geological data showed that slabs sink gradually through the mantle at rates more or less the same. This perspective enabled us to study slab shape as a function of absolute trench motion. While mantle stationary trenches tend to create steep slabs or slab walls, the flat-lying segments are formed where the overlying trenches are mobile relative to the mantle, normal facing during roll-back, overturned during slab advance.  Under the assumption of vertical sinking after break-off, it is also possible to locate the palaeo-trenches.  When combined with absolute plate motion reconstructions, tomographically determined volume and size of the subducted lithosphere can also be used to estimate the size/width of the prehistoric oceans. To this end, we build on and further develop concepts that relate absolute trench motion during subduction to modern slab geometry to evaluate the possible range of dimensions associated with opening and closure of the Iranian back-arc basins.</p>


Author(s):  
Peter A. Cawood ◽  
Chris J. Hawkesworth ◽  
Sergei A. Pisarevsky ◽  
Bruno Dhuime ◽  
Fabio A. Capitanio ◽  
...  

Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780–2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700–2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'.


10.1144/m55 ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. NP-NP

This memoir is the first to review all of Antarctica's volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world's major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).


2016 ◽  
Vol 5 (1) ◽  
pp. 21
Author(s):  
Indra Budi Prasetyawan

The origin and evolution of  back-arc spreading in the eastern edge of Scotia Plate will be discussed in this paper. The Scotia Plate is a tectonicplate on the edge of the South Atlantic and Southern Ocean, located between the South American and Antartic plates. The East Scotia Ridge (ESR) in the eastern edge of Scotia Plate, forned due to subduction of the South American plate beneath the South Sandwich plate along the South Sandwich Island arc. The methods and techniques of data acquisition used were data from absolution motions and data from magnetic anomalies and bathymetric data. Magnetic anomalies and  bathymetric data that used in this paper consist of two sets data. First, magnetic anomalies and  bathymetric data which were obtained by aboard HMS Endurance in the 1969-70 austral summer, and the second, magnetic anomalies and  bathymetric data which were obtained after removal of the International Geomagnetic Reference Field (IGRF). Absolution motion analyses in the subduction zones of Sandwich plate results that form back-arc spreading in East Scotia Ridge showing high deformation for slow moving upper plates. Where back-arc spreading is associated with upper plate retreat that reaches 26.9 mm/year and have back-arc deformation style consistent with upper plate absolute. Key Words: Geological oceanography, Scotia plate, back-arc spreading


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 565 ◽  
Author(s):  
Véronique Le Roux ◽  
Yan Liang

The peridotite section of supra-subduction zone ophiolites is often crosscut by pyroxenite veins, reflecting the variety of melts that percolate through the mantle wedge, react, and eventually crystallize in the shallow lithospheric mantle. Understanding the nature of parental melts and the timing of formation of these pyroxenites provides unique constraints on melt infiltration processes that may occur in active subduction zones. This study deciphers the processes of orthopyroxenite and clinopyroxenite formation in the Josephine ophiolite (USA), using new trace and major element analyses of pyroxenite minerals, closure temperatures, elemental profiles, diffusion modeling, and equilibrium melt calculations. We show that multiple melt percolation events are required to explain the variable chemistry of peridotite-hosted pyroxenite veins, consistent with previous observations in the xenolith record. We argue that the Josephine ophiolite evolved in conditions intermediate between back-arc and sub-arc. Clinopyroxenites formed at an early stage of ophiolite formation from percolation of high-Ca boninites. Several million years later, and shortly before exhumation, orthopyroxenites formed through remelting of the Josephine harzburgites through percolation of ultra-depleted low-Ca boninites. Thus, we support the hypothesis that multiple types of boninites can be created at different stages of arc formation and that ophiolitic pyroxenites uniquely record the timing of boninite percolation in subduction zone mantle.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 503
Author(s):  
Dohyun Kim ◽  
Haemyeong Jung ◽  
Jungjin Lee

Seismic anisotropy of S-wave, trench-parallel or trench-normal polarization direction of fast S-wave, has been observed in the fore-arc and back-arc regions of subduction zones. Lattice preferred orientation (LPO) of elastically anisotropic chlorite has been suggested as one of the major causes of seismic anisotropy in subduction zones. However, there are two different LPOs of chlorite reported based on the previous studies of natural chlorite peridotites, which can produce different expression of seismic anisotropy. The mechanism for causing the two different LPOs of chlorite is not known. Therefore, we conducted deformation experiments of chlorite peridotite under high pressure–temperature conditions (P = 0.5–2.5 GPa, T = 540–720 °C). We found that two different chlorite LPOs were developed depending on the magnitude of shear strain. The type-1 chlorite LPO is characterized by the [001] axes aligned subnormal to the shear plane, and the type-2 chlorite LPO is characterized by a girdle distribution of the [001] axes subnormal to the shear direction. The type-1 chlorite LPO developed under low shear strain (γ ≤ 3.1 ± 0.3), producing trench-parallel seismic anisotropy. The type-2 chlorite LPO developed under high shear strain (γ ≥ 5.1 ± 1.5), producing trench-normal seismic anisotropy. The anisotropy of S-wave velocity (AVs) of chlorite was very strong up to AVs = 48.7% so that anomalous seismic anisotropy in subduction zones can be influenced by the chlorite LPOs.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Maria Luce Frezzotti

Abstract At subduction zones, most diamonds form by carbon saturation in hydrous fluids released from lithospheric plates on equilibration with mantle rocks. Although organic molecules are predicted among dissolved species which are the source for carbon in diamonds, their occurrence is not demonstrated in nature, and the physical model for crustal diamond formation is debated. Here, using Raman microspectroscopy, I determine the structure of carbon-based phases inside fluid inclusions in diamond-bearing rocks from the Alps. The results provide direct evidence that diamond surfaces are coated by sp2-, and sp3-bonded amorphous carbon and functional groups of carboxylic acids (e.g., carboxyl, carboxylate, methyl, and methylene), indicating the geosynthesis of organic compounds in deep hydrous fluids. Moreover, this study suggests diamond nucleation via metastable molecular precursors. As a possible scenario, with carbon saturation by reduction of carboxylate groups, I consider tetrahedral H-terminated C groups as templates for the growth of sp3-structured carbon.


2018 ◽  
Vol 195 ◽  
pp. 03019
Author(s):  
Rian Mahendra Taruna ◽  
Vrieslend Haris Banyunegoro ◽  
Gatut Daniarsyad

The Lombok region especially Mataram city, is situated in a very active seismic zone because of the existence of subduction zones and the Flores back arc thrust. Hence, the peak ground acceleration (PGA) at the surface is necessary for seismic design regulation referring to SNI 1726:2012. In this research we conduct a probabilistic seismic hazard analysis to estimate the PGA at the bedrock with a 2% probability of exceedance in 50 years corresponding to the return period of 2500 years. These results are then multiplied by the amplification factor referred from shear wave velocity at 30 m depth (Vs30) and the microtremor method. The result of the analysis may describe the seismic hazard in Mataram city which is important for building codes.


Sign in / Sign up

Export Citation Format

Share Document