Is there an environmental crisis in Madagascar’s highlands? Insights from the spatio-temporal evolution and demographic modelling of lavaka (large gullies)

Author(s):  
Liesa Brosens ◽  
Benjamin Campforts ◽  
Liesbet Jacobs ◽  
Vao Fenotiana Razanamahandry ◽  
Quinten Van Moerbeke ◽  
...  

<p>The Malagasy highlands are scattered with large inverse teardrop-shaped gullies called lavaka, which are by many considered as the prime indication of a currently ongoing human-induced environmental crisis. Yet, these gullies are known to have existed long before human arrival on the island, resulting in the highly debated role of anthropogenic disturbances on their formation. Here, we assess the dynamics of 700 lavaka in the lake Alaotra region from 1949 to the 2010s by using historical aerial pictures and present day satellite imagery. An overall birth to stabilization ratio of 6.1 indicates a currently rapid growing lavaka population. Observed growth-, birth- and stabilization rates allowed us to calculate a mean lavaka population age of 410 ± 40 years, and estimate that the current crisis started at 943 ± 430 cal. yr BP. This timeframe corresponds well with the “subsistence-shift”, where people move from hunting and foraging to farming and herding practices upon the introduction of cattle in the region. These findings were integrated into a novel, temporally explicit lavaka population model - building upon the observed lavaka growth-, birth- and stabilization rates and lavaka size distributions - where different environmental pressure scenarios were tested. Modelling outcomes show that the currently observed lavaka crisis largely results from a rapid increase in environmental pressure over the last centuries, likely caused by the combined effects of deforestation and overgrazing related to human population growth and the introduction of cattle. With this study we show the potential of an integrated data-modeling approach, where demographic concepts are applied to geomorphological features, allowing to link their evolution with past anthropogenically driven environmental changes.</p>

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Méndez ◽  
J. A. Gill ◽  
B. Þórisson ◽  
S. R. Vignisson ◽  
T. G. Gunnarsson ◽  
...  

AbstractWhat determines why some birds migrate and others do not? This question is fundamental to understanding how migratory systems are responding to environmental changes, but the causes of individual migratory behaviours have proven difficult to isolate. We show that, in a partially migratory population of Eurasian oystercatchers (Haematopus ostralegus), the migratory behaviour of progeny follows paternal but not maternal behaviour, and is unrelated to timing of hatching or fledging. These findings highlight the key role of social interactions in shaping the migratory behaviour of new generations, and thus the spatio-temporal distribution of migratory populations.


Author(s):  
Emma Mason

This chapter locates Rossetti in the context of the book’s ecotheological argument, which traces an ecological love command in her writing through her engagement with Tractarianism, the Pre-Raphaelite Brotherhood, the Church Fathers, and Francis of Assisi. It establishes her Anglo-Catholic imagining of the cosmos as a fabric of participation and communal experience embodied in Christ. The first section reads Rossetti in the context of current Victorian ecocriticism, which underplays the role of Christianity in the development of nineteenth-century environmentalism. The next sections question critical readings of Rossetti as a reclusive thinker and argue instead for an educated and politicized Christian for whom indifference to the spiritual is complicit with an environmental crisis in which the weak and vulnerable suffer most. This introduction also refers to the wider field of Rossetti studies and introduces her reading of grace and apocalypse as a major contribution to the intradiscipline of Christianity and ecology.


2021 ◽  
Vol 63 (2) ◽  
pp. 1-25
Author(s):  
Giancarlo Visconti

ABSTRACTVoters’ ideological stances have long been considered one of the most important factors for understanding electoral choices in Chile. In recent years, however, the literature has begun to call this premise into question, due to several changes in the Chilean political landscape: the current crisis of representation, the high programmatic congruence between the two main coalitions, the decline in the political relevance of the dictatorship, and the rise of nonprogrammatic electoral strategies. In addition to these transformations, Chile switched to voluntary voting in 2012. This article studies whether ideology still informs electoral choices in Chile in an era of voluntary voting. It implements a conjoint survey experiment in low-to-middle-income neighborhoods in Santiago, where voters would be expected to be less ideological. It shows that candidates’ ideological labels are crucial for understanding the electoral decisions of a large part of the sample, particularly among likely voters.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


2021 ◽  
Vol 9 (5) ◽  
pp. 467
Author(s):  
Mostafa Farrag ◽  
Gerald Corzo Perez ◽  
Dimitri Solomatine

Many grid-based spatial hydrological models suffer from the complexity of setting up a coherent spatial structure to calibrate such a complex, highly parameterized system. There are essential aspects of model-building to be taken into account: spatial resolution, the routing equation limitations, and calibration of spatial parameters, and their influence on modeling results, all are decisions that are often made without adequate analysis. In this research, an experimental analysis of grid discretization level, an analysis of processes integration, and the routing concepts are analyzed. The HBV-96 model is set up for each cell, and later on, cells are integrated into an interlinked modeling system (Hapi). The Jiboa River Basin in El Salvador is used as a case study. The first concept tested is the model structure temporal responses, which are highly linked to the runoff dynamics. By changing the runoff generation model description, we explore the responses to events. Two routing models are considered: Muskingum, which routes the runoff from each cell following the river network, and Maxbas, which routes the runoff directly to the outlet. The second concept is the spatial representation, where the model is built and tested for different spatial resolutions (500 m, 1 km, 2 km, and 4 km). The results show that the spatial sensitivity of the resolution is highly linked to the routing method, and it was found that routing sensitivity influenced the model performance more than the spatial discretization, and allowing for coarser discretization makes the model simpler and computationally faster. Slight performance improvement is gained by using different parameters’ values for each cell. It was found that the 2 km cell size corresponds to the least model error values. The proposed hydrological modeling codes have been published as open-source.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2841
Author(s):  
Khizer Mehmood ◽  
Abdul Jalil ◽  
Ahmad Ali ◽  
Baber Khan ◽  
Maria Murad ◽  
...  

Despite eminent progress in recent years, various challenges associated with object tracking algorithms such as scale variations, partial or full occlusions, background clutters, illumination variations are still required to be resolved with improved estimation for real-time applications. This paper proposes a robust and fast algorithm for object tracking based on spatio-temporal context (STC). A pyramid representation-based scale correlation filter is incorporated to overcome the STC’s inability on the rapid change of scale of target. It learns appearance induced by variations in the target scale sampled at a different set of scales. During occlusion, most correlation filter trackers start drifting due to the wrong update of samples. To prevent the target model from drift, an occlusion detection and handling mechanism are incorporated. Occlusion is detected from the peak correlation score of the response map. It continuously predicts target location during occlusion and passes it to the STC tracking model. After the successful detection of occlusion, an extended Kalman filter is used for occlusion handling. This decreases the chance of tracking failure as the Kalman filter continuously updates itself and the tracking model. Further improvement to the model is provided by fusion with average peak to correlation energy (APCE) criteria, which automatically update the target model to deal with environmental changes. Extensive calculations on the benchmark datasets indicate the efficacy of the proposed tracking method with state of the art in terms of performance analysis.


2021 ◽  
Vol 10 (3) ◽  
pp. 166
Author(s):  
Hartmut Müller ◽  
Marije Louwsma

The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned at the European level. However, further integration and alignment of public health data, statistical data and spatio-temporal data could provide even better information for governments and actors involved in managing the outbreak, both at national and supra-national level. The Infrastructure for Spatial Information in Europe (INSPIRE) initiative and the NUTS system provide a framework to guide future integration and extension of existing systems.


2021 ◽  
Vol 51 (2) ◽  
pp. 176-192
Author(s):  
Nadia Ruiz

Brian Epstein has recently argued that a thoroughly microfoundationalist approach towards economics is unconvincing for metaphysical reasons. Generally, Epstein argues that for an improvement in the methodology of social science we must adopt social ontology as the foundation of social sciences; that is, the standing microfoundationalist debate could be solved by fixing economics’ ontology. However, as I show in this paper, fixing the social ontology prior to the process of model construction is optional instead of necessary and that metaphysical-ontological commitments are often the outcome of model construction, not its starting point. By focusing on the practice of modeling in economics the paper provides a useful inroad into the debate about the role of metaphysics in the natural and social sciences more generally.


Author(s):  
Mathias Fink

Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses ‘time-reversal mirrors’ with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that ‘instantaneous time mirrors’, mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves.


Author(s):  
Ebony I Weems ◽  
Noé U de la Sancha ◽  
Laurel J Anderson ◽  
Carlos Zambrana-Torrelio ◽  
Ronaldo P Ferraris

Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


Sign in / Sign up

Export Citation Format

Share Document