Material, Magnetic, and Microbial Features of a Submarine Inflow ZoneTraversed by SUSTAIN Drill Cores, Surtsey Volcano, Iceland

Author(s):  
Jacob Peterson ◽  
Marie Jackson ◽  
Joshua Marquardt ◽  
Peter Lippert ◽  
Nobumichi Tamura ◽  
...  

<p>A series of basaltic eruptions from 1963 to 1967 off the southern coast of Iceland produced the oceanic island of Surtsey. Investigations of this volcanic system provide a time-lapse window into the real-time alteration of basaltic tephra through interactions with meteoric water in a subaerial tuff cone and with seawater in submarine deposits. In 1979, a 181 m core was recovered from a borehole (SE-01) on the eastern flank of the Surtur vent. In 2017, the ICDP-supported SUSTAIN drilling project drilled two vertical cored boreholes (SE-02a, SE-02b) to 151 and 187 m below surface (m b.s.) parallel to the 1979 borehole, and an additional angled cored borehole (SE-03) to 354 measured depth. These newly recovered cores, in comparison with the 1979 core, have promoted research into alteration processes within the volcano over the half century since its eruption. The scientific drilling undertaken in both 1979 and 2017 provides data critical to investigating mechanisms and rates of mineralogical change in basalt, evolving material and magnetic properties, and the characterization of basalt-hosted microbial communities.</p><p>            Previous research, including mineralogical analyses and geophysical downhole logging, reveals a weakly altered region at ~143-155 m b.s. that corresponds with a submarine zone of cool seawater inflow.  The purpose of this study is to better understand processes in this zone by examining SE-02b drill core samples taken at 141.6 m b.s. (83-86 °C) with mineralogical analyses and at 148 m b.s. (83-84 °C) with magnetic analyses and microbial community analyses. Mapping of the weakly-consolidated basaltic tuff at micrometer-scale using synchrotron X-ray micro-diffraction and micro-fluorescence studies shows that the basalt is primarily composed of fresh sideromelane glass, volcanic crystals, and open voids. Olivine and labradorite are the principal volcanic minerals; they have begun to alter to lizardite and aluminous tobermorite, respectively. The basaltic glass has begun to alter to nanocrystalline clinochlore and smectitic clay mineral, mainly nontronite and montmorillonite. The abundance of fresh glass, however, confirms a weakly altered region of the volcano. Uniaxial and cubic single domain titanomagnetite is the principal magnetic remanence carrier in the glass, whereas the magnetic minerals in more highly altered zones of lapilli tuff, only a few meters distant, are more oxidized and exhibit different magnetic anisotropies, consistent with the growth of secondary titanomaghemite. The properties of magnetic remanence remained relatively stable in the cool seawater inflow zone but changed very rapidly during fluid-rock interactions at higher hydrothermal temperatures. The microbial community detected in the drill core sample at 148 m b.s. from SE-02b is dominated by taxa generally found in seawater such as Psychromonas, Glaciecola, Marinomonas and suggests a possible infiltration of microbial taxa from the seawater to the submarine deposit. This anomalously permeable, poorly-consolidated horizon provides a strong contrast to the characteristics of the well-lithified lapilli tuff deposits and demonstrates the potential for substantial variability in mineralogical, magnetic and microbial submarine processes in other Surtseyan volcanoes and seamount structures.</p>

2019 ◽  
Vol 25 ◽  
pp. 35-46 ◽  
Author(s):  
Marie D. Jackson ◽  
Magnús T. Gudmundsson ◽  
Tobias B. Weisenberger ◽  
J. Michael Rhodes ◽  
Andri Stefánsson ◽  
...  

Abstract. The 2017 Surtsey Underwater volcanic System for Thermophiles, Alteration processes and INnovative concretes (SUSTAIN) drilling project at Surtsey volcano, sponsored in part by the International Continental Scientific Drilling Program (ICDP), provides precise observations of the hydrothermal, geochemical, geomagnetic, and microbiological changes that have occurred in basaltic tephra and minor intrusions since explosive and effusive eruptions produced the oceanic island in 1963–1967. Two vertically cored boreholes, to 152 and 192 m below the surface, were drilled using filtered, UV-sterilized seawater circulating fluid to minimize microbial contamination. These cores parallel a 181 m core drilled in 1979. Introductory investigations indicate changes in material properties and whole-rock compositions over the past 38 years. A Surtsey subsurface observatory installed to 181 m in one vertical borehole holds incubation experiments that monitor in situ mineralogical and microbial alteration processes at 25–124 ∘C. A third cored borehole, inclined 55∘ in a 264∘ azimuthal direction to 354 m measured depth, provides further insights into eruption processes, including the presence of a diatreme that extends at least 100 m into the seafloor beneath the Surtur crater. The SUSTAIN project provides the first time-lapse drilling record into a very young oceanic basaltic volcano over a range of temperatures, 25–141 ∘C from 1979 to 2017, and subaerial and submarine hydrothermal fluid compositions. Rigorous procedures undertaken during the drilling operation protected the sensitive environment of the Surtsey Natural Preserve.


2019 ◽  
Vol 966 ◽  
pp. 282-289 ◽  
Author(s):  
Susilawati ◽  
Aris Doyan ◽  
Muhammad Taufik ◽  
Wahyudi ◽  
Eryn Ryantin Gunawan ◽  
...  

The research was conducted to examine the content of Fe and other metal in natural sand of beach Ampenan, Mataram, Indonesia which is expected to be used as microwave absorbent material. Characterizations of the electrical and magnetic properties Barium M-Hexaferrite (BaM) with Zn-Mn doping (BaFe12-2xZnxMnxO19) are biosynthesized. Research carried out among others tested the metal content of Fe and other metals, synthesize BaFe12-2xZnxMnxO19. The samples were characterized using Vibrating Sample Magnetometer (VSM) and Network Vector Analyzer (VNA) for the test properties of electricity and magnetism, as well as the absorption of microwaves. The results from the AAS (Atomic Absorption Spectroscopy) testing showed that each gram of magnetic minerals in the natural sand containing 16.27 mg Fe, which states that the majority of metal components content is 69.80% Fe metal with the Magnetite and Hematite phases. The result from VSM showed that the coercivity value decreased when doping ion concentration and calcination temperature increased (0.16 Tesla at 600°C for x = 0.0 and 0.09 Tesla at 800°C for x = 1.0). Value of magnetic saturation and the magnetic remanence decreased with increasing ion concentration (Ms= 4.94 emu/g at x = 0.0 decreased to 0.31 emu/g at x = 1.0) and Mr = 3.43 emu/g for x = 0.0 decreased to 0.06 emu/g at x=1.0. These indicates that the sample has been soft magnetic. The result from VNA showed that the electrical conductivity values measured in the range 8.0-15.0 GHz indicate that the sample is a semiconductor (1.62×10-2 S/cm). The result from VNA showed that the microwave absorption properties increased at higher concentration of doping ions and the calcination temperature would increase the value of Reflection Loss (RL). Maximum RL value of the sample is -14.37 dB at 15 GHz and the absorption coefficient of 96.34%. These results indicate that the BaFe10.8Zn0.6Mn0.6O19 sample can be applied as a microwave absorbent material on X-band to Ku- band frequency. Keyword: Characterization, Barium M-Hexaferrite, doping, microwave, absorbent.


2004 ◽  
Vol 83 (3) ◽  
pp. 209-225 ◽  
Author(s):  
D. Lagrou ◽  
N. Vandenberghe ◽  
S. Van Simaeys ◽  
J. Hus

AbstractThis paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation. The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the lithostratigraphic boundary between theTerhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical techniques performed on magnetic extractions. The failure to detect them may be due to the low concentration of these minerals, the small grain size, and the close physical relation with pyrite.


2020 ◽  
Vol 14 ◽  
pp. 47-62
Author(s):  
Marie D. Jackson

Petrographic studies of thin sections from the 1979 and 2017 Surtsey drill cores provide new insights into microstructural features in basaltic lapilli tuff sampled from the principal structural and hydrothermal zones of the volcano. These describe narrow rims of fine ash on altered glass pyroclasts in thin sections of the 2017 cores, characteristics of granular and microtubular structures in the original thin sections of the 1979 core, and glass alteration in diverse environments. The narrow ash rims follow the outlines of glass pyroclasts in the subaerial tuff cone and in submarine and sub-seafloor deposits; they suggest complex eruptive and depositional processes. The tubular microstructures resemble endolithic microborings in older oceanic basalt; they suggest possible microbial activity. Tubule lengths indicate rapid growth rates, up to 30 µm in ~15 years. Comparisons of glass alteration in thin sections prepared immediately after drilling in 1979 and 2017 indicate differential time-lapse alteration processes in the structural and hydrothermal zones of the volcano. In contrast, thin sections of the 1979 core prepared after 38 years in the repository reveal labile glass alteration during archival storage. The oven-dry density of the sub-seafloor lapilli tuff decreases in 2017 samples with high porosity and water absorption and increases in 2017 samples with a compact ash matrix and lower water absorption. The petrographic descriptions and material measurements provide a foundational reference for further investigations of explosive eruption and deposition of basaltic tephra at Surtsey and the subsequent alteration of these deposits in the volcanic environment and, potentially, the curatorial environment.


2020 ◽  
Vol 14 ◽  
pp. 19-32
Author(s):  
Jocelyn McPhie ◽  
James D.L. White ◽  
Carolyn Gorny ◽  
Marie D. Jackson ◽  
Magnús Tumi Gudmundsson ◽  
...  

Surtsey was drilled in 2017 in the context of the Surtsey Underwater volcanic System for Thermophiles, Alteration processes and INnovative Concretes (SUSTAIN) project. Vertical drill holes, SE-02a and SE02b (drilled to 191.64 m), and angled drill SE-03 (drilled to 354.05 m), intersected armoured lapilli tuff and lapilli tuff generated mainly by explosive eruptions at Surtur from November 1963 to January 1964. The top ~20 m of lapilli tuff was erupted from Surtungur. Intervals of coherent basalt in SE-02b (15.7 to 17 m and <15 cm at the end) and in SE-03 (<1 m at ~60 m and ~238 m, and 10 m near the base) are probably intrusions that may have fed the small lavas erupted at Surtur ~2.5 years later. Although collared only a few m from the 1979 drill hole, neither SE-02a nor SE-02b intersected the 13-m-thick interval of basalt found in the 1979 drill hole. The 2017 drill cores are entirely lithified and variably altered, reflecting the effects of hydrothermal alteration and cement deposition on the originally fresh, unconsolidated ash and lapilli. Drill hole SE-03 was drilled on an azimuth of 264o and at 55o from horizontal, obliquely crossing the crater- and conduit-fill of Surtur. Although the exact trajectory of SE-03 is unknown (the drill hole was not surveyed), the drill hole ended at a vertical depth of ~100 m below the pre-eruption sea floor, however, sedimentary facies known to underlie the sea floor nearby were not intersected. Surtur eruptions therefore excavated the pre-eruption sea floor to a depth of several tens of m.


Sign in / Sign up

Export Citation Format

Share Document