Temporal and spatial considerations in data-model comparisons involving transient paleoclimatic simulations

Author(s):  
Patrick Bartlein ◽  
Sandy Harrison

<p>The increasing availability of time-evolving or transient palaeoclimatic simulations makes it imperative to develop “best-practices” for comparing simulations with palaeoclimatic observations including both climate reconstructions and environmental data.  There are two sets of considerations, temporal and spatial, that should guide those comparisons.  The chronology of simulations can in some ways be viewed as exact, as determined by the insolation forcing, but data archiving and reporting conventions, such as reporting summaries that use the modern calendar (that leads to the long-recognized palaeo-calendar effect) can, if ignored, lead to “built-in” temporal offsets of thousands of years in such features as temperature or precipitation maxima or minima.  Likewise, there are age uncertainties in time series of palaeoclimatic data that are often ignored, despite the fact that these are large during “climatically interesting times” such as the Younger Dryas chronozone.  Similarly, although model resolution is increasing, there is still a mismatch in topography (and its climatic effects) between a model and the “real world” sensed by the palaeoclimatic data sources. </p><p>There are existing approaches for dealing with some of these issues, such as calendar-adjustment programs, Monte-Carlo approaches for describing age uncertainties in palaeoclimate time series, or clustering approaches for objectively defining appropriate regions for the calculation of area averages, but there is certainly room for further development.  This abstract is intended to serve as platform for discussion of some of best practices for data-model comparisons in transient mode.</p>

2010 ◽  
Vol 27 (1-2) ◽  
pp. 81-90
Author(s):  
Krishna Poudel

Mountains have distinct geography and are dynamic in nature compared to the plains. 'Verticality' and 'variation' are two fundamental specificities of the mountain geography. They possess distinct temporal and spatial characteristics in a unique socio-cultural setting. There is an ever increasing need for spatial and temporal data for planning and management activities; and Geo Information (GI) Science (including Geographic Information and Earth Observation Systems). This is being recognized more and more as a common platform for integrating spatial data with social, economic and environmental data and information from different sources. This paper investigates the applicability and challenges of GISscience in the context of mountain geography with ample evidences and observations from the mountain specific publications, empirical research findings and reports. The contextual explanation of mountain geography, mountain specific problems, scientific concerns about the mountain geography, advances in GIScience, the role of GIScience for sustainable development, challenges on application of GIScience in the contexts of mountains are the points of discussion. Finally, conclusion has been made with some specific action oriented recommendations.


2021 ◽  
Vol 13 (16) ◽  
pp. 3069
Author(s):  
Yadong Liu ◽  
Junhwan Kim ◽  
David H. Fleisher ◽  
Kwang Soo Kim

Seasonal forecasts of crop yield are important components for agricultural policy decisions and farmer planning. A wide range of input data are often needed to forecast crop yield in a region where sophisticated approaches such as machine learning and process-based models are used. This requires considerable effort for data preparation in addition to identifying data sources. Here, we propose a simpler approach called the Analogy Based Crop-yield (ABC) forecast scheme to make timely and accurate prediction of regional crop yield using a minimum set of inputs. In the ABC method, a growing season from a prior long-term period, e.g., 10 years, is first identified as analogous to the current season by the use of a similarity index based on the time series leaf area index (LAI) patterns. Crop yield in the given growing season is then forecasted using the weighted yield average reported in the analogous seasons for the area of interest. The ABC approach was used to predict corn and soybean yields in the Midwestern U.S. at the county level for the period of 2017–2019. The MOD15A2H, which is a satellite data product for LAI, was used to compile inputs. The mean absolute percentage error (MAPE) of crop yield forecasts was <10% for corn and soybean in each growing season when the time series of LAI from the day of year 89 to 209 was used as inputs to the ABC approach. The prediction error for the ABC approach was comparable to results from a deep neural network model that relied on soil and weather data as well as satellite data in a previous study. These results indicate that the ABC approach allowed for crop yield forecast with a lead-time of at least two months before harvest. In particular, the ABC scheme would be useful for regions where crop yield forecasts are limited by availability of reliable environmental data.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2156
Author(s):  
George Pouliasis ◽  
Gina Alexandra Torres-Alves ◽  
Oswaldo Morales-Napoles

The generation of synthetic time series is important in contemporary water sciences for their wide applicability and ability to model environmental uncertainty. Hydroclimatic variables often exhibit highly skewed distributions, intermittency (that is, alternating dry and wet intervals), and spatial and temporal dependencies that pose a particular challenge to their study. Vine copula models offer an appealing approach to generate synthetic time series because of their ability to preserve any marginal distribution while modeling a variety of probabilistic dependence structures. In this work, we focus on the stochastic modeling of hydroclimatic processes using vine copula models. We provide an approach to model intermittency by coupling Markov chains with vine copula models. Our approach preserves first-order auto- and cross-dependencies (correlation). Moreover, we present a novel framework that is able to model multiple processes simultaneously. This method is based on the coupling of temporal and spatial dependence models through repetitive sampling. The result is a parsimonious and flexible method that can adequately account for temporal and spatial dependencies. Our method is illustrated within the context of a recent reliability assessment of a historical hydraulic structure in central Mexico. Our results show that by ignoring important characteristics of probabilistic dependence that are well captured by our approach, the reliability of the structure could be severely underestimated.


2021 ◽  
Vol 9 (4) ◽  
pp. 363
Author(s):  
Camilla Bertolini ◽  
Edouard Royer ◽  
Roberto Pastres

Effects of climatic changes in transitional ecosystems are often not linear, with some areas likely experiencing faster or more intense responses, which something important to consider in the perspective of climate forecasting. In this study of the Venice lagoon, time series of the past decade were used, and primary productivity was estimated from hourly oxygen data using a published model. Temporal and spatial patterns of water temperature, salinity and productivity time series were identified by applying clustering analysis. Phytoplankton and nutrient data from long-term surveys were correlated to primary productivity model outputs. pmax, the maximum oxygen production rate in a given day, was found to positively correlate with plankton variables measured in surveys. Clustering analysis showed the occurrence of summer heatwaves in 2008, 2013, 2015 and 2018 and three warm prolonged summers (2012, 2017, 2019) coincided with lower summer pmax values. Spatial effects in terms of temperature were found with segregation between confined and open areas, although the patterns varied from year to year. Production and respiration differences showed that the lagoon, despite seasonality, was overall heterotrophic, with internal water bodies having greater values of heterotrophy. Warm, dry years with high salinity had lower degrees of summer autotrophy.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

&lt;p&gt;&lt;span&gt;Since the late 70&amp;#8217;s, successive satellite missions have been monitoring the sun&amp;#8217;s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth&amp;#8217;s energy imbalance, &lt;/span&gt;&lt;span&gt;i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth&amp;#8217;s climate. With this amount of TSI data, solar irradiance reconstruction models &amp;#160;can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V&lt;/span&gt;&lt;span&gt;arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.&amp;#160;&amp;#160;The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.&amp;#160;&amp;#160;We show our first results and compare it with previous releases (PMOD,ACRIM, ... ).&amp;#160;&lt;/span&gt;&lt;/p&gt;


Hydrology ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 63 ◽  
Author(s):  
Benjamin Nelsen ◽  
D. Williams ◽  
Gustavious Williams ◽  
Candace Berrett

Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.


2014 ◽  
Vol 22 (2) ◽  
pp. 102-102 ◽  
Author(s):  
Chris Brierley ◽  
Kira Rehfeld
Keyword(s):  

Telematika ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 11
Author(s):  
Rifki Indra Perwira ◽  
Danang Yudhiantoro ◽  
Endah Wahyurini

Arrowroot is an alternative food substitute that can be used as processed flour or starch. This arrowroot can also produce several processed products such as arrowroot chips. The number of arrowroot requests from various regions causes the need for accurate calculations related to the volume of harvest from the arrowroot. Fuzzy logic is a method that can be used to predict arrowroot yields every period to meet market demand. The parameters used in this system are based on environmental data (temperature humidity, climate, altitude), genetic data (age and variety), and cultivation technique data (seed quality, fertilizing, planting media). The results of this study are in the form of an application to predict the volume of arrowroot crop yields based on these parameters. From the results of MAPE, get a percentage of 11.7% which indicates that the level of accuracy using the fuzzy cheng time series model is said to be useful for forecasting on arrowroot plants.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Lan Chang ◽  
Martin G. Schultz ◽  
Xin Lan ◽  
Audra McClure-Begley ◽  
Irina Petropavlovskikh ◽  
...  

This paper is aimed at atmospheric scientists without formal training in statistical theory. Its goal is to (1) provide a critical review of the rationale for trend analysis of the time series typically encountered in the field of atmospheric chemistry, (2) describe a range of trend-detection methods, and (3) demonstrate effective means of conveying the results to a general audience. Trend detections in atmospheric chemical composition data are often challenged by a variety of sources of uncertainty, which often behave differently to other environmental phenomena such as temperature, precipitation rate, or stream flow, and may require specific methods depending on the science questions to be addressed. Some sources of uncertainty can be explicitly included in the model specification, such as autocorrelation and seasonality, but some inherent uncertainties are difficult to quantify, such as data heterogeneity and measurement uncertainty due to the combined effect of short and long term natural variability, instrumental stability, and aggregation of data from sparse sampling frequency. Failure to account for these uncertainties might result in an inappropriate inference of the trends and their estimation errors. On the other hand, the variation in extreme events might be interesting for different scientific questions, for example, the frequency of extremely high surface ozone events and their relevance to human health. In this study we aim to (1) review trend detection methods for addressing different levels of data complexity in different chemical species, (2) demonstrate that the incorporation of scientifically interpretable covariates can outperform pure numerical curve fitting techniques in terms of uncertainty reduction and improved predictability, (3) illustrate the study of trends based on extreme quantiles that can provide insight beyond standard mean or median based trend estimates, and (4) present an advanced method of quantifying regional trends based on the inter-site correlations of multisite data. All demonstrations are based on time series of observed trace gases relevant to atmospheric chemistry, but the methods can be applied to other environmental data sets.


Sign in / Sign up

Export Citation Format

Share Document