Simulation Study of the Wind Dynamics over Mont Tai during the Transition Periods

Author(s):  
Iheng Tsai ◽  
Meigen Zhang

<p>Tai-An city located near the southern foothill of Mont Tai (117.105 °E, 36.256 °N, 1526 m a.s.l.) is known for severe ozone air pollution, frequent nocturnal surface ozone enhancement events, and especially the non-negligible contribution of ozone region transport, owing to diurnal thermally driven circulations induced by steep conical isolated topography. Therefore, In this study, mesoscale wind and temperature structure around Mont Tai region in summer 2018 is predicted by the Regional Atmospheric Modeling System (RAMS). After rigorous model validation, <em>viz.</em> the De Ridder's interpolation technique within the roughness sublayer and the statistical performance metrics, objectively ensuring the credibility of the simulation results, the <em>a priori</em> selection of Valley-wind days identifies are expected to be dominated by the thermally driven flow. We focus on the wind dynamic in the morning and evening transition periods on the valley-wind days. RAMS model not only reproduced the temporal sequence of the flow reversal between different above-ground heights, various local aspects and upstream/downstream positions but also captured the majority of energy transfer mechanisms during transition periods. Besides, we developed the code simulation of direct shortwave radiation included the topographic shadowing effect to repair RAMS missing module.</p>

2014 ◽  
Vol 7 (2) ◽  
pp. 1645-1689
Author(s):  
E. Hache ◽  
J.-L. Attié ◽  
C. Tourneur ◽  
P. Ricaud ◽  
L. Coret ◽  
...  

Abstract. Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0–1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0–1 km ozone column during the daytime especially over land.


Author(s):  
Carlos A. Maldonado ◽  
Marc L. Jlesnick

The Internet has become a growing channel for consumer purchases. Half of all U.S. consumers made at least one purchase on-line in 2001. However, many consumers report frustration with the lack of support for navigation within many Internet retailers' web sites. Several design patterns have been suggested to overcome these limitations, such as expanded hierarchies and breadcrumbs. This study investigated the effects of these design patterns on users' quantitative performance and subjective preference for ecommerce web sites. Expanded hierarchies, a design pattern that is commonly used by many retail web sites, degraded all of the performance metrics assessed in the study. Users required more time, made more errors, used more clicks, and had lower satisfaction scores for sites designed with expanded hierarchies. The results for breadcrumbs suggest that they may improve performance. The inclusion of breadcrumbs reduced the number of clicks required by users to complete the tasks, but other performance metrics did not reach statistical significance. The results indicate that design patterns that are believed to improve performance a priori may not yield the results expected.


2016 ◽  
Vol 21 (1) ◽  
pp. 35-47
Author(s):  
Ram P. Regmi ◽  
Sangeeta Maharjan

Atmospheric processes over the Himalayan complex terrain are yet to be studied extensively. Only a few significant researches are reported from this region and the Far-Western Region (FWR) of Nepal still remains untouched. Thus, the present study was conceived to understand the meteorological flow characteristics and thermal environment over the region and associated areas during the late wintertime with the application of the state-of-the-art-of Weather Research and Forecasting (WRF) Modeling System. The study revealed that the northern mountainous region developed strong down slope wind during the night and morning times, which sweeps out the southern plain area of Nepal and may reach just beyond the border. The wind over the plain was very shallow whose depth was just about 100 m. The down slope winds over the southern slope of the Daijee and Nandhaur mountain ranges were significantly enhanced by the subsidence of the southerly wind that prevails above 1 km height above the mean sea level. Close to the noon time a very gentle southerly valley wind from the southern plain replaced the nighttime down slope. Very shallow but strong surface inversion builds up over the plain that breaks up in the late morning. The depth of the mixed layer and the valley wind may reach up to 1km in the afternoon. The thermal environment over the FWR of Nepal was fairly hot that may remain around 35°C in the afternoon around the Mahendranagar area whereas the temperature during the nighttime may go as low as 23°C. The study revealed that, contrary to the general perception, temperature over plain areas of Nepal was significantly higher than further southern areas belonging to India. The meteorological flow fields over the FWR of Nepal executed diurnal periodicity with little day-to-day variation during the late wintertime.Journal of Institute of Science and TechnologyVolume 21, Issue 1, August 2016, page: 35-47


2004 ◽  
Vol 61 (24) ◽  
pp. 3097-3111 ◽  
Author(s):  
Gabriele Rampanelli ◽  
Dino Zardi ◽  
Richard Rotunno

Abstract The basic physical mechanisms governing the daytime evolution of up-valley winds in mountain valleys are investigated using a series of numerical simulations of thermally driven flow over idealized three-dimensional topography. The three-dimensional topography used in this study is composed of two, two-dimensional topographies: one a slope connecting a plain with a plateau and the other a valley with a horizontal floor. The present two-dimensional simulations of the valley flow agree with results of previous investigations in that the heated sidewalls produce upslope flows that require a compensating subsidence in the valley core bringing down potentially warmer air from the stable free atmosphere. In the context of the three-dimensional valley–plain simulations, the authors find that this subsidence heating in the valley core is the main contributor to the valley– plain temperature contrast, which, under the hydrostatic approximation, is the main contributor to the valley– plain pressure difference that drives the up-valley wind.


2020 ◽  
Author(s):  
Jieun Wie ◽  
Hyo-Jin Park ◽  
Hyomee Lee ◽  
Byung-Kwon Moon

<p>The concentration of surface ozone in East Asia is high due to strong solar radiation, but decreases in areas affected by summer monsoons. This study analyzes the summer surface ozone variations in East Asia using meteorological and atmospheric chemistry variables in 12 models participating in Chemistry-Climate Model Initiative (CCMI) for the period of 1979 to 2010. The concentration of 850 hPa ozone was identified two modes by Empirical Orthogonal Functions (EOF) analysis. The first mode is an increase in all regions over East Asia, mainly in eastern China. This mode was associated with downward wind, weak horizontal wind speed, increase in temperatures, decrease in precipitation. The second mode showed high ozone concentrations in eastern China and low in northern Japan. In eastern China, temperatures and precipitation are decreased, and shortwave radiation reaches the surface is increased. In addition, the concentration of nitrogen oxides and carbon monoxide and the net ozone production are increased. The second mode was highly correlated with El Nino-Southern Oscillation (ENSO) and western North Pacific subtropical high (WNPSH) indices and was found to be closely associated with East Asian summer monsoons.</p><p> </p><p>Acknowledgements: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1A2C1008549). We acknowledge the modeling groups for making their simulations available for this analysis, the joint WCRP SPARC/IGAC Chemistry–Climate Model Initiative (CCMI) for organizing and coordinating the model simulations and data analysis activity, and the British Atmospheric Data Centre (BADC) for collecting and archiving the CCMI model output.</p>


2012 ◽  
Vol 13 (4) ◽  
pp. 1301-1316
Author(s):  
B. A. Forman ◽  
S. A. Margulis

Abstract Accurate estimates of terrestrial hydrologic states and fluxes are, in large part, dependent on accurate estimates of the spatiotemporal variability and uncertainty of land surface forcings, including downwelling longwave (LW) and shortwave (SW) fluxes. However, such characterization of land surface forcings does not always receive proper attention. This study attempts to better estimate LW and SW fluxes, including their uncertainties, by merging different sources of information while considering horizontal error correlations via implementation of a 2D conditioning procedure within a Bayesian framework. A total of 25 experiments were performed utilizing four different, readily available downwelling radiation products. The localized region of space used to constrain horizontal error correlations was defined using an influence length, , specified a priori. Quantitative comparisons are made against an independent, ground-based observational network. In general, results suggest moderate improvement in cloudy-sky LW fluxes and modest improvement in clear-sky SW fluxes during certain times of the year when using the 2D framework relative to a more traditional 1D framework, but only up to a certain influence length scale. Beyond this length scale the flux estimates were typically degraded because of the introduction of spurious correlations. The influence length scale that yielded the greatest improvement in LW radiative flux estimation during cloudy-sky conditions, in general, increased with increasing cloud cover. These findings have implications for improving downwelling radiative flux estimation and further enhancing existing Land Data Assimilation System (LDAS) frameworks.


2009 ◽  
Vol 137 (10) ◽  
pp. 3437-3455 ◽  
Author(s):  
Thomas Spengler ◽  
Jan H. Schween ◽  
Markus Ablinger ◽  
Günther Zängl ◽  
Joseph Egger

Abstract The summertime thermal circulation in the region of an asymmetric valley exit is investigated by means of observations and high-resolution model simulations. The northeastward-oriented Alpine Lech Valley opening into the Bavarian Alpine foreland has an eastern slope exceeding the western slope by about 15 km. Northerly winds along the eastern slope are frequently observed, reaching substantial strength during fair weather conditions. A field experiment has been conducted to explore this phenomenon and to pinpoint the connection of the northeasterly flow to the Lech Valley wind circulation. Numerical simulations have also been carried out to support the interpretation of the observations. It is found that the northerlies owe their existence to the dominantly easterly flow along the foothills of the Alps, which is partly induced by the Alpine heat low but may be strengthened by favorable synoptic conditions. Examples for both situations will be discussed. The diurnal flow in the Lech Valley has little obvious impact on these northeasterlies. On days with moderate synoptic easterly flow, a wake is present on the lee of the eastern slope of the exit region, accompanied by a shear zone along the edge of the wake. This shear zone is forced southward during the daytime because of thermally initiated pressure gradients between the Alpine foreland and the Alps, leading to sudden wind changes in the exit area at the time of its passage.


2021 ◽  
Vol 21 (7) ◽  
pp. 5705-5718
Author(s):  
Yawei Qu ◽  
Apostolos Voulgarakis ◽  
Tijian Wang ◽  
Matthew Kasoar ◽  
Chris Wells ◽  
...  

Abstract. Interactions between aerosols and gases in the atmosphere have been the focus of an increasing number of studies in recent years. Here, we focus on aerosol effects on tropospheric ozone that involve meteorological feedbacks induced by aerosol–radiation interactions. Specifically, we study the effects that involve aerosol influences on the transport of gaseous pollutants and on atmospheric moisture, both of which can impact ozone chemistry. For this purpose, we use the UK Earth System Model (UKESM1), with which we performed sensitivity simulations including and excluding the aerosol direct radiative effect (ADE) on atmospheric chemistry, and focused our analysis on an area with a high aerosol presence, namely China. By comparing the simulations, we found that ADE reduced shortwave radiation by 11 % in China and consequently led to lower turbulent kinetic energy, weaker horizontal winds and a shallower boundary layer (with a maximum of 102.28 m reduction in north China). On the one hand, the suppressed boundary layer limited the export and diffusion of pollutants and increased the concentration of CO, SO2, NO, NO2, PM2.5 and PM10 in the aerosol-rich regions. The NO/NO2 ratio generally increased and led to more ozone depletion. On the other hand, the boundary layer top acted as a barrier that trapped moisture at lower altitudes and reduced the moisture at higher altitudes (the specific humidity was reduced by 1.69 % at 1493 m on average in China). Due to reduced water vapour, fewer clouds were formed and more sunlight reached the surface, so the photolytical production of ozone increased. Under the combined effect of the two meteorology feedback methods, the annual average ozone concentration in China declined by 2.01 ppb (6.2 %), which was found to bring the model into closer agreement with surface ozone measurements from different parts of China.


2015 ◽  
Vol 15 (8) ◽  
pp. 4093-4116 ◽  
Author(s):  
J. M. Henderson ◽  
J. Eluszkiewicz ◽  
M. E. Mountain ◽  
T. Nehrkorn ◽  
R. Y.-W. Chang ◽  
...  

Abstract. This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May–October 2012 and March–November 2013 – the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s−1 in 2012 and 0.3 m s−1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface–atmosphere fluxes using CARVE observations.


2016 ◽  
Vol 55 (7) ◽  
pp. 1497-1511 ◽  
Author(s):  
Gert-Jan Duine ◽  
Thierry Hedde ◽  
Pierre Roubin ◽  
Pierre Durand

AbstractA simple relation to diagnose the existence of a thermally driven down-valley wind in a shallow (100 m deep) and narrow (1–2 km wide) valley based on routine weather measurements has been determined. The relation is based on a method that has been derived from a forecast verification principle. It consists of optimizing a threshold of permanently measured quantities to nowcast the thermally driven Cadarache (southeastern France) down-valley wind. Three parameters permanently observed at a 110-m-high tower have been examined: the potential temperature difference between the heights of 110 and 2 m, the wind speed at 110 m, and a bulk Richardson number. The thresholds are optimized using the wind observations obtained within the valley during the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) field experiment, which was conducted in the winter of 2013. The highest predictability of the down-valley wind at the height of 10 m (correct nowcasting ratio of 0.90) was found for the potential temperature difference at a threshold value of 2.6 K. The applicability of the method to other heights of the down-valley wind (2 and 30 m) and to summer conditions is also demonstrated. This allowed a reconstruction of the climatology of the thermally driven down-valley wind that demonstrates that the wind exists throughout the year and is strongly linked to nighttime duration. This threshold technique will make it possible to forecast the subgrid-scale down-valley wind from operational numerical weather coarse-grid simulations by means of statistical downscaling.


Sign in / Sign up

Export Citation Format

Share Document