GuMNet – The Guadarrama Monitoring Network initiative (Spain)

Author(s):  
Fidel González-Rouco ◽  

<p>GuMNet is a facility that operates continuous observation of the atmosphere, surface and subsurface at the Sierra de Guadarrama, located 50 km north-northwest of Madrid. It is composed of 10 real–time automatic stations and attempts to promote research on weather, soil thermodynamics, boundary layer physics, impacts of climate change on climate and ecosystems and air pollution in Sierra de Guadarrama. This infrastructure represents a first step into providing a unique observational network in a high protected environment that can serve a wide range of scientific and educational interests and also management.</p><p>The stations are located at heights ranging from 900 m.a.s.l. to 2225 m.a.s.l. Every station has been settled in open areas, except for one that can be found in a forested zone. High altitude sites are focused on periglacial areas, while low elevation sites are placed in pasture environments. The atmospheric instrumentation includes sensors used for the measurement of air temperature, air humidity, 4-component radiation, solid and liquid precipitation, snow depth, wind speed and wind direction. For the subsurface measurements, soil temperature and humidity sensors have been placed in 9 trenches up to 1 m depth and 12 boreholes up to 2 m and 20 m depth. One of the lowest stations has been equipped with a 3D sonic anemometer that includes a CO2/H2O analyzer. Wind profiles and eddy-covariance will be sampled, which is important for energy and water vapor exchanges. A portable station has also been equipped with a 3D sonic anemometer, which will enable the comparison between measurements at both sites. The entire network is connected via general packet radio service (GPRS) to the management software at the central laboratory located at the Campus of Excellence of Moncloa (Madrid, Spain).</p><p>The database generated by GuMNet is accessible through request and allows for developing studies concerning environmental and climate change in middle and high mountain areas. This valuable source of data aims at generating a space for scientific collaboration with other national and international institutions. The diversity of potential uses of the GuMNet observational network will be very useful in education at every level.</p><p>Website and contact: http://www.ucm.es/gumnet/</p>

Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
George Kazakis ◽  
Dany Ghosn ◽  
Ilektra Remoundou ◽  
Panagiotis Nyktas ◽  
Michael A. Talias ◽  
...  

High mountain zones in the Mediterranean area are considered more vulnerable in comparison to lower altitudes zones. Lefka Ori massif, a global biodiversity hotspot on the island of Crete is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring network. The paper examines species and vegetation changes with respect to climate and altitude over a seven-year period (2001–2008) at a range of spatial scales (10 m Summit Area Section-SAS, 5 m SAS, 1 m2) using the GLORIA protocol in a re-survey of four mountain summits (1664 m–2339 m). The absolute species loss between 2001–2008 was 4, among which were 2 endemics. At the scale of individual summits, the highest changes were recorded at the lower summits with absolute species loss 4 in both cases. Paired t-tests for the total species richness at 1 m2 between 2001–2008, showed no significant differences. No significant differences were found at the individual summit level neither at the 5 m SAS or the 10 m SAS. Time series analysis reveals that soil mean annual temperature is increasing at all summits. Linear regressions with the climatic variables show a positive effect on species richness at the 5 m and 10 m SAS as well as species changes at the 5 m SAS. In particular, June mean temperature has the highest predictive power for species changes at the 5 m SAS. Recorded changes in species richness point more towards fluctuations within a plant community’s normal range, although there seem to be more significant diversity changes in higher summits related to aspects. Our work provides additional evidence to assess the effects of climate change on plant diversity in Mediterranean mountains and particularly those of islands which remain understudied.


2018 ◽  
Vol 11 (3) ◽  
pp. 140-154 ◽  
Author(s):  
Robert G.H. Bunce ◽  
Claire M. Wood ◽  
Simon M. Smart

Abstract The paper demonstrates that the British Uplands have been influenced to a great extent by policy - for example, the planting of almost a million hectares of exotic conifers since the Second World War, and the extent of designated areas. Otherwise, climate change transcends policy and is locally important to coastal and high mountain habitats. The different policies affecting the Uplands, such as the Common Agricultural Policy, are described, as are the wide range of designations such as National Parks, which may have a stabilising effect in times of great change. A new trend has started in Scotland in the last 20 years of local initiatives, such as the community ownership of Eigg, however large landowners still dominate. An impact table is presented of the habitats that make up the Uplands and their links to driving forces, with potential changes described that are likely to take place under future policies such as Brexit. Dwarf shrub heath is the habitat affected by many management drivers, whereas habitats such as Inland Rock, are relatively stable but most likely to be affected by climate change.


2021 ◽  
Author(s):  
Cornelia Baumann ◽  
Inga Beck

<p>Education is key in order to create a generation that thinks and acts sustainable and that considers nature as one of the most important good.Within the three years Interreg Project ‘KlimaAlps’ (www.klimaalps.eu) – making climate change visible - one major task is the establishment of a training for educators, to become a certified ‘Climate-Pedagogue’ for the alpine region. The ‘Climate-Pedagogue’-training contains background information of climate change in the Alps and a variety of innovative educational tools and methods. It covers aspects of the high mountain areas, rivers and lakes, human beings, agriculture as well as moors.  The project is managed by the ‘Energiewende Oberland’; five additional partners from Austria and Bavaria are responsible for e. g. a high quality of the taught scientific information (Environmental Research Station Schneefernerhaus), the didactical input (University of Innsbruck, Department of Geography), the outreach activities and the implementation (Naturpark Karwendel, Klimabündnis Oberösterreich, Landratsamt Garmisch-Partenkirchen). During the last one and half years, the concept for the ‘Climate-Pedagogue’- training was worked out in cooperation with other environmental facilities and in March 2021 the first lectures of a pilot run with over 30 selected participants were held. In total there will be two runs in 2021 in order to evaluate the recent version of the training as good as possible. The next and long-term steps will be the firm establishment of a chargeable ‘Climate-Pedagogue’ – Training for every interested person for at least the coming ten years, as well as the strengthening and growing of the network. The presentation will give a short overview about the entire project as well as details about the ‘Climate-Pedagogue’ – Training and some first impressions of the already hold lectures in 2021.</p>


2021 ◽  
Vol 7 (2) ◽  
pp. 1-26
Author(s):  
Prachita Arora ◽  
Sheikh Nawaz Ali ◽  
P. Morthekai

The Himalayan high mountain areas are more vulnerable to climate change and the awareness of its impacts among the natives is very crucial as well as beneficial to stakeholders and policymakers. The impacts of climate change via food security, water availability, natural hazards, agriculture, and livelihoods have a direct relation or threat to the lives of high mountain communities, as these areas are experiencing the immediate and greatest impacts of climate change. Although the tourism industry has become the backbone of the economy in these areas, a significant increase in tourist footfall has also impacted the environment, livelihoods, culture and food habits. To understand the local perceptions of climate change, a binary question-based survey (interview) was conducted in six main subdivisions of North Sikkim, which is a biodiversity and tourism hotspot. The data revealed that irrespective of the locality (urban/rural) people are aware of climate change. Significant coherence in the responses among gender and age groups, and between remote and developed areas exist. The transhumant herder populations are also well aware of climate change (80%). Peoples’ perception about temperature change and the meteorological data are also consistent, however, a misperception is observed with the precipitation data. Decreasing snowfall patterns and increasing landslides in the higher altitudes are major concerns among the natives. The majority of people have denied any positive outcome of climate change and around 85% of the respondents are willing to participate at the community level in mitigation efforts to help curb climate change.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 498 ◽  
Author(s):  
O. Demiroglu ◽  
C. Hall

In late 2019, the Intergovernmental Panel on Climate Change (IPCC) released their much-awaited Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). High mountain areas, polar regions, low-lying islands and coastal areas, and ocean and marine ecosystems, were separately dealt by experts to reveal the impacts of climate change on these regions, as well as the responses of the natural and human systems inhabiting or related to these regions. The tourism sector was found, among the main systems, influenced by climate change in the oceanic and cryospheric environments. In this study, we deepen the understanding of tourism and climate interrelationships in the polar regions. In doing so, we step outside the climate resilience of polar tourism paradigm and systematically assess the literature in terms of its gaps relating to an extended framework where the impacts of tourism on climate through a combined and rebound effects lens are in question as well. Following a systematic identification and screening on two major bibliometric databases, a final selection of 93 studies, spanning the 2004–2019 period, are visualized in terms of their thematic and co-authorship networks and a study area based geobibliography, coupled with an emerging hot spots analysis, to help identify gaps for future research.


2021 ◽  
Vol 26 (2) ◽  
pp. 99-109
Author(s):  
Binod Dawadi ◽  
Shankar Sharma ◽  
Kalpana Hamal ◽  
Nitesh Khadka ◽  
Yam Prasad Dhital ◽  
...  

Climate change studies of the high mountain areas of the central Himalayan region are mostly represented by the meteorological stations of the lower elevation. Therefore, to validate the climatic linkages, daily observational climate data from five automated weather stations (AWS) at elevations ranging from 2660 m to 5600 m on the southern slope of Mt. Everest were examined. Despite variations in the means and distribution of daily, 5-day, 10-day, and monthly temperature and precipitation between stations located at a higher elevation and their corresponding lower elevation, temperature records in the different elevations are highly correlated. In contrast, the precipitation data shows a comparatively weaker correlation. The slopes of the regression model (0.82–1.13) with (R2>0.74) for higher altitude (5050 m and 5600 m) throughout the year, 0.83–1.12 (R2>0.68) except late monsoon season for the station at 4260 m and 5050 m asl indicated the similar variability of the temperature between those stations. Similarly, Namche (3570 m) temperature changes by 0.81–1.32°C per degree change in corresponding lower elevation Lukla station (2660 m), except for monsoon season. However, inconsistent variation was observed between the station with a large altitudinal difference (2940 m) at Lukla and Kala Patthar (5600 m). In general, climate records from corresponding lower elevation can be used to quantitatively assess climatic information of the high elevation areas on the southern slope of Mt. Everest. However, corrections are necessary when absolute values of climatic factors are considered, especially in snow cover and snow-free areas. This study will be beneficial for understanding the high-altitude climate change and impact studies.


Vestnik MGSU ◽  
2020 ◽  
pp. 1047-1055
Author(s):  
Oksana A. Tezadova ◽  
Natalia N. Korshunova

Introduction. For a long time the Russian economy has had a unique nature. This is primarily due to the fact that the country has a fuel and raw materials oriented economy; therefore, the welfare of the country depends, as a rule, on such economic activities as the mining industry, in particular, oil and gas industry and metallurgy. The present-day international economy is focused on the service sector, where tourism plays a significant role. Nowadays, tourism is a powerful international industry. It has been recognized as an economic phenomenon of the century for its rapid growth rate. In many countries, tourism plays a significant role in GDP and its generation; it creates new jobs and generates employment opportunities. Materials and methods. The problem of the underdeveloped tourist infrastructure, including hotel facilities that should offer a wide range of relevant services, including health improvement in the Russian Federation, is exemplified by Kabardino-Balkaria. Kabardino-Balkaria has every important feature characteristic of modern tourism: good climatic conditions, numerous landmarks and items of cultural property. However, one may face a number of construction problems in this territory due to its terrain. The application of modular structures and buildings in the design of a hotel facility in high mountain areas is proposed. Results. The analysis of the area has been carried out; a huge amount of factual material has been studied; conclusions have been made on the basis of the advantage of using modular structures in this area. Conclusions. The universality of a modular system enables modules to be combined in any direction, creating a complete structure transportable at any distance.


2020 ◽  
Author(s):  
Moonil Kim ◽  
Nick Strigul ◽  
Elena Rovenskaya ◽  
Florian Kraxner ◽  
Woo-Kyun Lee

<p>The velocity and impact of climate change on forest appear to be site, environment, and tree species-specific. The primary objective of this research is to assess the changes in productivity of major temperate tree species in South Korea using terrestrial inventory and satellite remote sensing data. The area covered by each tree species was further categorized into either lowland forest (LLF) or high mountain forest (HMF) and investigated. We used the repeated Korean national forest inventory (NFI) data to calculate a stand-level annual increment (SAI). We then compared the SAI, a ground-based productivity measure, to MODIS net primary productivity (NPP) as a measure of productivity based on satellite imagery. In addition, the growth index of each increment core, which eliminated the effect of tree age on radial growth, was derived as an indicator of the variation of productivity by tree species over the past four decades. Based on these steps, we understand the species- and elevation-dependent dynamics. The secondary objective is to predict the forest dynamics under climate change using the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model. The PPA-SiBGC is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the major species by using NFI and increment core data. We predicted forest dynamics using the following time-series metrics: Net ecosystem exchange, aboveground biomass, belowground biomass, C, N, soil respiration, and relative abundance. We then focus on comparing the impact of climate change on LLF and HMF. The results of our study can be used to develop climate-smart forest management strategies to ensure that both LLF and HMF continue to be resilient and continue to provide a wide range of ecosystem services in the Eastern Asian region.</p>


2020 ◽  
Vol 163 (2) ◽  
pp. 953-972
Author(s):  
Graham McDowell ◽  
Leila Harris ◽  
Michele Koppes ◽  
Martin F. Price ◽  
Kai M.A. Chan ◽  
...  

AbstractAdaptation needs in high mountain communities are increasingly well documented, yet most efforts to address these needs continue to befall mountain people who have contributed little to the problem of climate change. This situation represents a contravention of accepted norms of climate justice and calls attention to the need for better understanding of prospects for externally resourced adaptation initiatives in high mountain areas. In response, this paper examines the architecture of formal adaptation support mechanisms organized through the United Nations Framework Convention on Climate Change (UNFCCC) and how such mechanisms might help to meet adaptation needs in high mountain communities. It outlines key global adaptation initiatives organized through the UNFCCC, clarifies idealized linkages between these global adaptation initiatives and meeting local adaptation needs, and evaluates actual progress in connecting such support with discrete adaptation needs in the upper Manaslu region of Nepal. The paper then critically examines observed shortcomings in matching adaptation support organized through the UNFCCC with local adaptation needs, including complications stemming from the bureaucratic nature of formal adaptation support mechanisms, the intervening role of the state in delivering aid, and the ways in which these complexities intersect with the specific socio-cultural contexts of mountain communities. It concludes by highlighting several prospects for increasing the quantity and quality of adaptation support to mountain communities. These opportunities are considered alongside several salient concerns about formal adaptation support mechanisms in an effort to provide a well-rounded assessment of the prospects for planned adaptations in high mountain communities.


Sign in / Sign up

Export Citation Format

Share Document