Interactions in the soil-plant-water system as a basis for landscape-adoptive planning of carbon sequestration in agroecosystems along natural moisture gradient

Author(s):  
Alla Yurova ◽  
Valery Kiryushin ◽  
Anna Yudina

<p>The key for implementation of sustainable development goals in land management is in multifunctional paradigm of landscape usage. A lot of scientific efforts were done since 1980s (e.g. Kiryushin, 2019) to develop a landscape-adaptive system which is in essence addressing</p><p>1) spatial distribution of plant varieties and farm operations adapted to topographical and lithological landscape features 2) temporal tuning of crop phenology to regional and even local weather conditions. This system proved especially useful in increasing the yield and yet reducing pollution level in experimental settings. However, there were no boost of implementation in the country of origin-Russia- due to number of reasons, social and economical included. The rapid growth of carbon tax and carbon market provides a new window of opportunity for landscape adaptive agriculture, but only in case documented benefit for carbon sequestration could be shown. Here we present theoretical proof of concept based on integrated critical zone model, 1D-ICZ (Giannakis et al, 2017), that couples computational modules for soil organic matter dynamics, soil aggregation and structure dynamics, bioturbation, plant productivity and nutrient uptake, water flow, solute speciation and transport, and mineral weathering kinetics. The model was applied to study C sequestration soil function along the regional natural soil moisture and temperature gradient. Calibration was done for three soil types (Retisols, Phaeozems, Chernozems) of increasing moisture deficits representing the well-drained landscape shoulder positions with an automorphic regime and hydromorphic footslope positions. The scenario simulation included the change in relative frequency of weather condition with low and extremely low, but also high end extremely high precipitation (from IPCC set of climate models). The model explicitly couples water infiltration storage and supply to soil structure and pedotransfer functions varying with meteorological conditions. This interaction allowed to select the current soil configuration and usage or structural and biogeochemical change in each soil and each scenario that are presumably most beneficial for C sequestration. The role of climate variables was maximum for automorphic regime and decreased with the decreasing distance to ground water. The soil textural, structural, and chemical properties on opposite played the major role on footslope positions. Accordingly, optimal land management option that promote corresponding soil structure, organic matter input and soil climate is proposed and discussed in balance with other soil functions.</p>

Author(s):  
Vito Ferro ◽  
Vincenzo Bagarello

Field plots are often used to obtain experimental data (soil loss values corresponding to different climate, soil, topographic, crop, and management conditions) for predicting and evaluating soil erosion and sediment yield. Plots are used to study physical phenomena affecting soil detachment and transport, and their sizes are determined according to the experimental objectives and the type of data to be obtained. Studies on interrill erosion due to rainfall impact and overland flow need small plot width (2–3 m) and length (< 10 m), while studies on rill erosion require plot lengths greater than 6–13 m. Sites must be selected to represent the range of uniform slopes prevailing in the farming area under consideration. Plots equipped to study interrill and rill erosion, like those used for developing the Universal Soil Loss Equation (USLE), measure erosion from the top of a slope where runoff begins; they must be wide enough to minimize the edge or border effects and long enough to develop downslope rills. Experimental stations generally include bounded runoff plots of known rea, slope steepness, slope length, and soil type, from which both runoff and soil loss can be monitored. Once the boundaries defining the plot area are fixed, a collecting equipment must be used to catch the plot runoff. A conveyance system (H-flume or pipe) carries total runoff to a unit sampling the sediment and a storage system, such as a sequence of tanks, in which sediments are accumulated. Simple methods have been developed for estimating the mean sediment concentration of all runoff stored in a tank by using the vertical concentration profile measured on a side of the tank. When a large number of plots are equipped, the sampling of suspension and consequent oven-drying in the laboratory are highly time-consuming. For this purpose, a sampler that can extract a column of suspension, extending from the free surface to the bottom of the tank, can be used. For large plots, or where runoff volumes are high, a divisor that splits the flow into equal parts and passes one part in a storage tank as a sample can be used. Examples of these devices include the Geib multislot divisor and the Coshocton wheel. Specific equipment and procedures must be employed to detect the soil removed by rill and gully erosion. Because most of the soil organic matter is found close to the soil surface, erosion significantly decreases soil organic matter content. Several studies have demonstrated that the soil removed by erosion is 1.3–5 times richer in organic matter than the remaining soil. Soil organic matter facilitates the formation of soil aggregates, increases soil porosity, and improves soil structure, facilitating water infiltration. The removal of organic matter content can influence soil infiltration, soil structure, and soil erodibility.


EDIS ◽  
2009 ◽  
Vol 2009 (1) ◽  
Author(s):  
Solomon G. Haile ◽  
Clyde W. Fraisse ◽  
Vimala D. Nair ◽  
Ramachandran P-K Nair

AE435, an 8-page fact sheet by Solomon G. Haile, Clyde W. Fraisse, Vimala D. Nair, and P.K. Ramachandran Nair, addresses some basic questions regarding the prospects of carbon (C) sequestration in forest and agricultural lands and examines the C sequestration potential of different land management practices that could play a role in GHG mitigation strategies. Includes references. Published by the UF Department of Agricultural and Biological Engineering, September 2008.


2018 ◽  
Vol 10 (12) ◽  
pp. 4769 ◽  
Author(s):  
Sutie Xu ◽  
Sindhu Jagadamma ◽  
Jason Rowntree

Grazing land ecosystem services including food provision and climate regulation are greatly influenced by soil health. This paper provides a condensed review of studies on the response of three important soil properties related to soil health to grazing land management: water infiltration, carbon (C) sequestration, and nitrogen use efficiency (NUE). Impacts of management strategies that are often used in grazing lands are discussed in this review including vegetation composition, grazing methods, and other factors such as fertilizer use and climatic conditions. In general, proper grazing management such as continuous moderate grazing and rotational/deferred-rotational grazing with low or moderate stocking rates tends to benefit all three soil properties. Water infiltration can usually be increased with full vegetation cover, increased soil C, and aggregate stability, or be decreased with greater soil bulk density. Adoption of highly productive plant species with faster turnover rates can promote soil C sequestration by increasing C input. However, excessive C removal from ecosystems due to overgrazing or improper soil fertilization management results in higher C loss, which can have detrimental effects on soil C sequestration. Proper stocking rate and a balanced manure/fertilizer management was found to be critical for enhancing NUE. Grazing land management sometimes simultaneously influence the three soil properties. Techniques that can increase soil C such as introduction of high productive plant species can often promote water infiltration and soil nitrogen (N). Some other practices such as adoption of N fertilizer may enhance C sequestration while being detrimental to NUE. An integrated management plan for a specific location or farm should be considered carefully to improve soil health as well as ecosystem production. This review provides farmers and policy makers the current state of general knowledge on how health-related soil processes are affected by grazing land management.


Author(s):  
Robert F. Keefer

Erosion can be controlled by four main means, that is, improving soil structure, covering soil with plants, covering soil with mulch, and using special structures. Soil structure is related to the soil tilth, or physical condition of a soil, with respect to ease of tillage or workability as shown by the fitness of a soil as a seedbed and the ease of root penetration. Other terms relating to soil structure improvement are soil aggregation and the formation of aggregates. Aggregates form when a cementing substance is present in a soil. The most important cementing substances in soil are soil polysaccharides and soil polyuronides produced as by-products from microorganisms during decomposition of organic matter. Other less important cementing substances in soil include clays, Ca, and Fe. Formation of aggregates results in improved water infiltration with reduction in erosion. Decomposition of organic matter in soils can be shown as an equation: . . . Plant and animal remains + O2 + soil microorganisms → CO2 + H2O + elements + humus + synthates + energy . . . The decomposition process has the following features: . . . 1. Oxygen is required; thus soil aeration is important. Anytime a soil is stirred or mixed by cultivation, spading, plowing, some organic matter decomposition occurs. 2. Readily available decomposable organic material is required for the microbes to work on. Green organic material, such as grass clippings, is an excellent substrate. 3. Many different types of soil microorganisms are involved in this process. Decomposition is more rapid in soils at pH 7 (neutral). 4. A product of organic decomposition is humus. Humus has many desirable features that improve a soil for plant growth. 5. Plant or animal remains are not effective in soil aggregation until they begin to decompose. 6. The more rapid the decomposition, the greater effect of soil aggregation. . . . Microbial synthates consist of polymers called “polysaccharides” and “polyuronides.” A polymer is a long-chain compound made up of single monomer units hooked together acting as a unit. The term “poly” means “many” and “saccharide” means “sugar.”


2020 ◽  
Author(s):  
Evelin Pihlap ◽  
Franziska Bucka ◽  
Tiia Haberstok ◽  
Emily Scholes ◽  
Tabea Klör ◽  
...  

&lt;p&gt;Soil structure and soil organic matter (SOM) are closely linked characteristics describing the status of development of a soil. Their interactions affect various physical, chemical and biological soil properties and functions like water holding capacity, water infiltration, composition of the carbon pool and microbial activity. Rehabilitated soils from post mining fields are considered to have poor soil structure, low nutrient content and microbial activity. Besides disturbed soil properties, in Australia soil rehabilitation success is also influenced by climatic conditions like high evaporation rate which affects rebuilding of soil system functions. Although there are several studies looking into the development of soil properties post rehabilitation in temperate climates, the intertwined development of soil structure and quality and quantity of SOM during soil formation under water stressed environment is not clear until now.&lt;/p&gt;&lt;p&gt;In this study we used a space-for-time chronosequence approach in the rehabilitated open-cast mines at Yallourn Mine (Victoria, Australia) to elucidate the development of soil structure and soil organic matter after rehabilitation in a water limited environment. We selected five different fields with different rehabilitation ages (40, 22, 11, 4 and 3 years) and two mature soils that are used as grazing land. In each field we sampled 6 independent locations with stainless steel cylinders (100 cm&lt;sup&gt;3&lt;/sup&gt;) at two depths of 0-4 cm and 10-14 cm. &amp;#160;All samples were analysed for bulk density, organic carbon (OC) and total nitrogen (TN) concentration. Selected samples were wet sieved into four aggregate size classes of &lt;63 &amp;#181;m, 63-200 &amp;#181;m, 200-630 &amp;#181;m and &gt;630 &amp;#181;m. For detecting OC contribution to aggregate formation, OC and TN was measured from each aggregate size fraction. This system is temporarily highly dynamic and shows different developments for bulk density and SOM stocks, which had an effect on the structure of the microbial communities. Along the space-for-time chronosequence we can observe soil structure formation with ageing and a build-up of a OM, which has a positive effect on recovering soil functionality.&lt;/p&gt;


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1331 ◽  
Author(s):  
Igor Bogunovic ◽  
Antonio Viduka ◽  
Ivan Magdic ◽  
Leon Josip Telak ◽  
Marcos Francos ◽  
...  

In urban areas, land use usually increases soil degradation. However, there are areas occupied by agriculture and woodlands with an essential role in provisioning food and other services such as water and climate regulation. The objective of this work was to assess the effect of long-term land use and soil management practices on peri-urban soils in Zagreb (Croatia). Samples were collected at depth 0–10 cm within intensively tilled cropland (CROP) and vineyard (VINE), traditional grass-covered orchard (ORCH), and forest (FOR). The results showed that bulk density was significantly higher in VINE and CROP than in ORCH and FOR. The opposite dynamic was observed in water-holding capacity, air-filled porosity, aggregate stability, organic matter, and soil organic matter stocks (SOCS). Soil water infiltration was higher in FOR plot compared to the other plots. Overall, land-use change had a substantial impact on soil properties and SOCS, especially in CROP and VINE soils. Tillage, pesticides, and fertilizer applications were presumably the reasons for altered soil quality properties. Intensively used areas (VINE and CROPS) may reduce soil ecosystems services such as the capacity for flood retention and C sequestration.


Author(s):  
Ghasem Ali Dianati Tilaki ◽  
Raziee Rahmani ◽  
Seyed Ali Hoseini ◽  
Ivan Vasenev

Author(s):  
K. Avarachen Mathew ◽  
Murat Van Ardelan ◽  
Susana Villa Gonzalez ◽  
Olav Vadstein ◽  
S. Vezhapparambu Veena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document