scholarly journals Greenhouse Gas Mitigation in Forest and Agricultural Lands: Carbon Sequestration

EDIS ◽  
2009 ◽  
Vol 2009 (1) ◽  
Author(s):  
Solomon G. Haile ◽  
Clyde W. Fraisse ◽  
Vimala D. Nair ◽  
Ramachandran P-K Nair

AE435, an 8-page fact sheet by Solomon G. Haile, Clyde W. Fraisse, Vimala D. Nair, and P.K. Ramachandran Nair, addresses some basic questions regarding the prospects of carbon (C) sequestration in forest and agricultural lands and examines the C sequestration potential of different land management practices that could play a role in GHG mitigation strategies. Includes references. Published by the UF Department of Agricultural and Biological Engineering, September 2008.

EDIS ◽  
2009 ◽  
Vol 2009 (1) ◽  
Author(s):  
Solomon G. Haile ◽  
Clyde W. Fraisse ◽  
Ramachandran P-K Nair ◽  
Vimala D. Nair

AE443, a 7-page fact sheet by Solomon G. Haile, Clyde W. Fraisse, P.K. Ramachandran Nair, and Vimala D. Nair, is part of the Greenhouse Gas Mitigation in Forest and Agricultural Lands series. It provides basic information about greenhouse gases (GHGs), the greenhouse effect, and global warming, and sources of GHG emissions from forest and agricultural lands and discusses land management practices that have potential to reduce GHG emissions in the agricultural and forestry sectors of Florida. Includes references. Published by the UF Department of Agricultural and Biological Engineering, December 2008.


2021 ◽  
Author(s):  
Sylvia Vetter ◽  
Michael Martin ◽  
Pete Smith

<p>Reducing greenhouse gas (GHG) emissions in to the atmosphere to limit global warming is the big challenge of the coming decades. The focus lies on negative emission technologies to remove GHGs from the atmosphere from different sectors. Agriculture produces around a quarter of all the anthropogenic GHGs globally (including land use change and afforestation). Reducing these net emissions can be achieved through techniques that increase the soil organic carbon (SOC) stocks. These techniques include improved management practices in agriculture and grassland systems, which increase the organic carbon (C) input or reduce soil disturbances. The C sequestration potential differs among soils depending on climate, soil properties and management, with the highest potential for poor soils (SOC stock farthest from saturation).</p><p>Modelling can be used to estimate the technical potential to sequester C of agricultural land under different mitigation practices for the next decades under different climate scenarios. The ECOSSE model was developed to simulate soil C dynamics and GHG emissions in mineral and organic soils. A spatial version of the model (GlobalECOSSE) was adapted to simulate agricultural soils around the world to calculate the SOC change under changing management and climate.</p><p>Practices like different tillage management, crop rotations and residue incorporation showed regional differences and the importance of adapting mitigation practices under an increased changing climate. A fast adoption of practices that increase SOC has its own challenges, as the potential to sequester C is high until the soil reached a new C equilibrium. Therefore, the potential to use soil C sequestration to reduce overall GHG emissions is limited. The results showed a high potential to sequester C until 2050 but much lower rates in the second half of the century, highlighting the importance of using soil C sequestration in the coming decades to reach net zero by 2050.</p>


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 922 ◽  
Author(s):  
Rafaella C. Mayrinck ◽  
Colin P. Laroque ◽  
Beyhan Y. Amichev ◽  
Ken Van Rees

Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.


2020 ◽  
Author(s):  
Zongyao Sha ◽  
Yongfei Bai ◽  
Ruren Li ◽  
Hai Lan ◽  
Xueliang Zhang ◽  
...  

Abstract The global temperature could increase over 1.5 or even 2 °C by the middle of 21st century due to massive emissions of greenhouse gases (GHGs) — of which carbon dioxide (CO2) is the largest component1. Human activities emit more than 10 PgC (1PgC=1015gC) per year into the atmosphere1, which is regarded as the primary reason for increased atmospheric CO2 concentration and global warming2. Global vegetation sequesters 112–169 PgC each year3, about half of which is released back into the atmosphere through autotrophic respiration while the rest, termed as net primary production (NPP), is for balancing the CO2 emissions from human activities, microbial respiration, and decomposition4. Carbon sequestration from vegetation varies under different environmental conditions5 and could also be significantly altered by land management practices (LMPs)6. Adopting optimal land management practices (OLMPs) helps sequester more CO2 from the atmosphere and mitigate climate changes. Understanding the extra carbon sequestration with OLMPs, or termed as carbon gap, is an important scientific topic that is rarely studied. Here we propose an integrated method to identify the location-specific OLMPs and assess the carbon gap by using remotely sensed time-series of NPP dataset, segmented landscape-vegetation-soil (LVS) zones and distance-constrained zonal analysis. The findings show that the carbon gap from global land plants totaled 13.74 PgC per year with OLMPs referenced from within a 20km neighborhood, an equivalent of ~1/5 of the total sequestered net carbon at the current level; half of the carbon gap clusters in only ~15% of vegetated area. The carbon gap flux rises with population density and the priority for implementing OLMPs should be given to the densely populated areas to enhance the global carbon sequestration capacity.


2021 ◽  
Author(s):  
Thomas Guillaume ◽  
David Makowski ◽  
Zamir Libohova ◽  
Luca Bragazza ◽  
Sokrat Sinaj

<p>Increasing soil organic carbon (SOC) in agro-ecosystems enables to address simultaneously food security as well as climate change adaptation and mitigation. Croplands represent a great potential to sequester atmospheric C because they are depleted in SOC. Hence, reliable estimations of SOC deficits in agro-ecosystems are crucial to evaluate the C sequestration potential of agricultural soils and support management practices. Using a 30-year old soil monitoring networks with 250 sites established in western Switzerland, we identified factors driving the long-term SOC dynamics in croplands (CR) and permanent grasslands (PG) and quantified SOC deficit. A new relationship between the silt + clay (SC) soil particles and the C stored in the mineral-associated fraction (MAOMC) was established. We also tested the assumption about whether or not PG can be used as carbon-saturated reference sites. The C-deficit in CR constituted about a third of their potential SOC content and was mainly affected by the proportion of temporary grassland in the crop rotation. SOC accrual or loss were the highest in sites that experienced land-use change. The MAOMC level in PG depended on the C accrual history, indicating that C-saturation level was not coincidental. Accordingly, the relationship between MAOMC and SC to determine soil C-saturation should be estimated by boundary line analysis instead of least squares regressions. In conclusion, PG do provide an additional SOC storage capacity under optimal management, though the storage capacity is greater for CR.</p>


2020 ◽  
Author(s):  
Carme Estruch ◽  
Roger Curcoll ◽  
Marta Borrós ◽  
Alba Àgueda ◽  
Josep-Anton Morguí

<p>Human activities implying land management are potential sources of greenhouse gases (GHGs) such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). In addition, agricultural management practices enhances the presence of reactive gases in the atmosphere such as ammonia (NH<sub>3</sub>).  Knowing the atmospheric variability of gases in relation to the different stages of the rice culture cycle and other anthropic activities could help to improve GHGs' mitigation strategies in deltas.</p><p>A mobile survey was undertaken through 2019 in the Ebro Delta as a part of the ClimaDat Network project (DEC station, www.climadat.es), to study the effect of land management in the spatial and temporal variability of greenhouse gases and NH<sub>3</sub> concentrations. We are broadening the scope of a survey undertaken in 2012 (Àgueda et al. 2017). In the new survey we increased the total number of transects and longitude every three weeks during a year, starting in December 2018.</p><p>Whereas atmospheric NH<sub>3</sub> concentration links with diurnal and seasonal cycles, the distribution of CO<sub>2</sub> and CH<sub>4</sub> shows a combination of spatial and temporal variability.   Our aim is to understand how we can use wind trajectories to find the principal sources of atmospheric variability. That is, can wind direction improve our comprehension of metabolic processes occurring in paddy lands? In this work, we use wind trajectories as means of spatial classification, to explore the spatiotemporal dynamic affecting the potential of CO<sub>2</sub> and CH<sub>4</sub> atmospheric concentration. </p>


2021 ◽  
Author(s):  
◽  
Bridget Ellen O'Leary

<p>The global carbon cycle has been significantly modified by increased human demand and consumption of natural resources. Billions of tonnes of carbon moves between the Earth’s natural spheres in any given year, with anthropogenic activities adding approximately 7.1 gigatonnes (Gt) of carbon (C) to this flux. On a global basis, the sum of C in living terrestrial biomass and soils is approximately three times greater than the carbon dioxide (CO2) in the atmosphere; with the current soil organic carbon (OC) pool estimated at about 1500 Gt (Falkowski et al. 2000). With total global emissions of CO2 from soils being acknowledged as one of the largest fluxes in the carbon cycle, ideas and research into mitigating this flux are now being recognised as extremely important in terms of climate change and the reduction of green house gases (GHG) in the future. Additional co-benefits of increasing carbon storage within the soil are improvements in a soil’s structural and hydrological capacity. For example, increasing organic carbon generally increases infiltration and storage capacity of soil, with potential to reduce flooding and erosion. There are several management options that can be applied in order to increase the amount of carbon in the soil. Adjustments to land management techniques (e.g. ploughing) and also changes to cropping and vegetation type can increase organic carbon content within the subsurface (Schlesinger & Andrews, 2000). If we are able to identify specific areas of the landscape that are prone to carbon losses or have potential to be modified to store additional carbon, we can take targeted action to mitigate and apply better management strategies to these areas. This research aims to investigate issues surrounding soil carbon and the more general sustainability issues of the Gisborne/East-Cape region, North Island, New Zealand. Maori-owned land has a large presence in the region. Much of this land is described as being “marginal” in many aspects. The region also has major issues in terms of flooding and erosion. Explored within this research are issues surrounding sustainability, (including flooding, erosion, and Maori land) with particular emphasis on carbon sequestration potential and the multiple co-benefits associated with increasing the amount of carbon in the soil. This research consists of a desktop study and field investigations focusing on differences in soil type and vegetation cover/land use and what effects these differences have on soil OC content within the subsurface. Soil chemical and physical analysis was undertaken with 220 soil samples collected from two case-study properties. Particle size analysis was carried out using a laser particle sizer (LPS) to determine textural characteristics and hydraulic capacity. Soil organic carbon (OC) content was determined following the colorimetric method, wet oxidation (Blakemore et al. 1987), with results identifying large difference in soil OC quantification between sampled sites. National scale data is explored and then compared with the results from this field investigation. The direct and indirect benefits resulting from more carbon being locked up in soil may assist in determining incentives for better land-use and land management practices in the Gisborne/East-Cape region. Potentially leading to benefits for the land-user, the environment and overall general sustainability.</p>


2018 ◽  
Vol 19 (2) ◽  
pp. 620-625 ◽  
Author(s):  
SITI LATIFAH ◽  
MUHDI MUHDI ◽  
AGUS PURWOKO ◽  
ETIKA TANJUNG

Latifah S, Muhdi, Purwoko A, Tanjung E. 2018. Estimation of aboveground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas 19: 620-625. Agroforestry is an ecologically and environmentally sustainable land use that offers great promise to carbon (C) sequestration. Forests play a significant role in reducing greenhouse gas emissions through maintaining current carbon stores and by increasing the rate of carbon sequestration. Vegetation carbon stocks are necessary to be quantified to evaluate the carbon sequestration potential in the ecosystem. Reasonable methods for estimating tree biomass and carbon storage on forest land are increasingly crucial given concerns of global climate change. This study aimed to evaluate C sequestration potential by agroforestry in North Sumatra Indonesia. This study was conducted at the Agroforestry system in Aek Nauli, Simalungun District, North Sumatra. Data collection for primary data was done through a field survey. The present study was carried out to determine above ground tree biomass of Toona sureni (Blume) Merr and Coffea arabica. Data retrieval of T. sureni and C. arabica was done by non-destructive sampling by measuring the diameter at breast height (dbh). The results showed that the potential of average above-ground biomass and carbon storage of T. sureni and C. arabica was 6.25 t ha-1 and 2.88 C t ha-1, respectively. Total aboveground biomass of Toona sureni and C. arabica in the study area was 93.75 ton, while total of carbon storage was 43.16 ton


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael Elias Mgalula ◽  
Oliver Vivian Wasonga ◽  
Christian Hülsebusch ◽  
Uwe Richter ◽  
Oliver Hensel

AbstractMany activities from livestock husbandry contribute to emission and concentration of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) gases to the atmosphere; activities such as grazing, manure and urine deposited or stored on land as well as crop farming practices such as tilling, burning of biomass or crop residues. A better understanding of the extent of emission sources and carbon sequestration potential for Eastern Africa rangelands is vital for developing mitigation strategies. In this article, we review the sources of emission with a focus on land conversion for crop farming, livestock husbandry, wildfire/burning and biotic processes such as soil biota activity in the ecosystem. The trade-offs of using rangeland with an emphasis on enhancing carbon sequestration potential are also addressed. This review revealed that many practices that enhance carbon capture process show promising benefits with sink capacity of −0.004 to 13 Mg C ha−1 year−1. However, given multiple land-use and environmental dynamics in Eastern African rangelands, it is imperative to generate more data across various land management and climatic zones in order to ascertain varied sink capacity. Improving carbon sequestration in rangelands through appropriate land management is a promising cost-effective strategy to mitigate climate change. Through improved farming or grazing management practice and restoring of degraded areas, there are significant benefits to enhance carbon sequestration. As rangeland resources are multi-faceted, engaging trans-disciplinary approaches is necessary to allow analyses of co-benefits of improved management or trade-offs degrading.


Sign in / Sign up

Export Citation Format

Share Document