Air Quality Measurement and Analysis by TROPOMI, OMI, MLS, OMPS, TANSO-FTS , and MERRA-2

Author(s):  
Jane Zeng ◽  
Suhung Shen ◽  
James Johnson ◽  
Andrey Savtchenko ◽  
Lena Iredell ◽  
...  

<p>Global and regional air quality measurements play an important role in the everyday life of people, inasmuch as atmospheric constituents such as ozone (O<sub>3</sub>), carbon monoxide (CO), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), methane (CH<sub>4</sub>), and aerosols may cause severe<!-- I guess I’m conservative in my wording; I’d say “significant” rather than “severe”. --> threats to human health and agriculture productivity. Space-based sensors on satellites<!-- Redundant with “Space-based”; you could say “Satellite sensors” instead (which I prefer to “Space-based”) --> are able to detect these atmospheric constituents directly and indirectly at high spatial and temporal scales. The TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5 Precursor (Sentinel-5P) satellite provides measurements of O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, CH<sub>4</sub>, CO, formaldehyde (HCHO), aerosols, and cloud in ultraviolet-visible (UV-VIS), near infrared (NIR), and shortwave infrared (SWIR) spectral ranges. The Ozone Monitoring Instrument (OMI) aboard the Aura mission measures ozone, aerosols, clouds, surface UV irradiance, and trace gases including NO<sub>2</sub>, SO<sub>2</sub>, HCHO, BrO, and OClO using UV electromagnetic spectrum bands. The Ozone Mapping Profiler Suite (OMPS) on the Suomi National Polar-Orbiting Partnership (Suomi-NPP or SNPP) provides environmental data products including O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2, </sub>and aerosols. The Microwave Limb Sounder (MLS) on Aura has been monitoring atmospheric chemical species (CO, volcanic SO<sub>2</sub>, O<sub>3</sub>, N<sub>2</sub>O, BrO), temperature, humidity, and cloud ice since 2004.<!-- MLS measures more than the species indicated here. Do you want to add an "etc." rather than list all? --> MLS measurements help understand stratospheric ozone chemistry, and the effects of air pollutants injected into the upper troposphere and low stratosphere. The Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) covers a wide spectral range from VIS to thermal infrared (TIR), which enables remote observations of the greenhouse gases carbon dioxide (CO<sub>2</sub>) and CH<sub>4</sub>. Furthermore, atmospheric constituent data are also available in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) NASA's atmospheric reanalysis data collection. MERRA-2 uses an upgraded version of the Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system, enhanced with more aspects of the Earth system. <!-- Check this. I added “atmospheric constituent data”, because the sentence didn’t make sense without it, and I believe that’s what this sentence was about. --></p><p>The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) supports over a thousand data collections in the focus areas of Atmospheric Composition, Water & Energy Cycles, and Climate Variability. Some of these data collections include atmospheric composition products from the ongoing TROPOMI, OMI, OMPS, MLS, TANSO-FTS, and MERRA-2 missions and projects. The GES DISC web site (https://disc.gsfc.nasa.gov) provides multiple tools designed to help data users easily search, subset, visualize, and download data from these diverse sources in a unified way. We will demonstrate several methodologies employing these tools to monitor air quality.</p>

2021 ◽  
Author(s):  
Claudia Volosciuk

<p>The Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) is driven by the need to understand the variability and trends in atmospheric composition and the related physical parameters, and to assess the consequences thereof. GAW provides reliable scientific information for a broad spectrum of users, including policymakers, on topics related to atmospheric chemical composition. The programme supports international environmental and climate agreements and improves our understanding of climate change and long-range transboundary air pollution through its work on greenhouse gases, aerosols, reactive gases, atmospheric deposition, stratospheric ozone, and ultraviolet radiation. GAW provides information based on combinations of observations, data analysis and modelling activities, and supports a number of applications at the global, regional and urban scale. This implies a variety of target groups and communication vectors. Due to the complexity and interrelations of the different constituents in atmospheric chemistry and the diversity of the target audience, communication of the related issues represents a substantial challenge. Some examples are questions like “If greenhouse gas emissions are falling, why do concentrations not decrease?”, “if satellite data show pollution reductions, why can’t we say that it is due to emission reductions?” etc.  </p><p>To sustain the credibility and increase the visibility of GAW within the WMO community and other national/international bodies, the broader scientific and policy communities, as well as the general public, increasing efforts towards “communicating GAW” are taken. The global pandemic related to COVID-19 was the dominating topic around the globe in 2020. This required adjustments to communication efforts. Due to in-person meetings being impossible, all communication efforts required delivery and engagement through virtual formats.</p><p>While emissions of carbon dioxide (among others) have decreased temporarily in 2020 due to COVID-19 restrictions, concentrations have continued to increase. This has led to confusion among many non-scientists who were surprised that the restrictions they were experiencing did not even have the effect of decreasing atmospheric concentrations of carbon dioxide. Thereby, the crisis has provided an opportunity to explain the difference between emissions and concentrations, emphasizing that carbon dioxide (and other greenhouse gases) are long-lived and remain in the atmosphere for a long time, and highlighting the importance to reach net-zero emissions. Similar confusion was related to the interpretation of the pollution levels and also required additional communication efforts.</p><p>Reflections on communication of atmospheric composition in the framework of WMO/GAW, including challenges and opportunities during the public health crisis will be presented.</p>


2021 ◽  
Author(s):  
Arno Keppens ◽  
Jean-Christopher Lambert ◽  
Daan Hubert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators, enabling users to verify the fitness-for-purpose of the S5P data.</p>


2016 ◽  
Vol 16 (6) ◽  
pp. 4191-4203 ◽  
Author(s):  
Peer Johannes Nowack ◽  
Nathan Luke Abraham ◽  
Peter Braesicke ◽  
John Adrian Pyle

Abstract. Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.


Optik ◽  
2017 ◽  
Vol 144 ◽  
pp. 597-602
Author(s):  
Chunmin Zhang ◽  
Dongdong Liu ◽  
Piao Rong ◽  
Yanfen Li

2020 ◽  
Author(s):  
Arno Keppens ◽  
Daan Hubert ◽  
Jean-Christopher Lambert ◽  
Steven Compernolle ◽  
Tijl Verhoelst ◽  
...  

<p>Part of the space segment of EU’s Copernicus Earth Observation programme, the Sentinel-5 Precursor (S5P) mission is dedicated to global and European atmospheric composition measurements of air quality, climate and the stratospheric ozone layer. On board of the S5P early afternoon polar satellite, the imaging spectrometer TROPOMI (TROPOspheric Monitoring Instrument) performs nadir measurements of the Earth radiance within the UV-visible and near-infrared spectral ranges, from which atmospheric ozone profile data are retrieved. Developed at the Royal Netherlands Meteorological Institute (KNMI) and based on the optimal estimation method, TROPOMI’s operational ozone profile retrieval algorithm has recently been upgraded. With respect to early retrieval attempts, accuracy is expected to have improved significantly, also thanks to recent updates of the TROPOMI Level-1b data product. This work reports on the initial validation of the improved TROPOMI height-resolved ozone data in the troposphere and stratosphere, as collected both from the operational S5P Mission Performance Centre/Validation Data Analysis Facility (MPC/VDAF) and from the S5PVT scientific project CHEOPS-5p. Based on the same validation best practices as developed for and applied to heritage sensors like GOME-2, OMI and IASI (Keppens et al., 2015, 2018), the validation methodology relies on the analysis of data retrieval diagnostics – like the averaging kernels’ information content – and on comparisons of TROPOMI data with reference ozone profile measurements. The latter are acquired by ozonesonde, stratospheric lidar, and tropospheric lidar stations performing network operation in the context of WMO's Global Atmosphere Watch and its contributing networks NDACC and SHADOZ. The dependence of TROPOMI’s ozone profile uncertainty on several influence quantities like cloud fraction and measurement parameters like sun and scan angles is examined and discussed. This work concludes with a set of quality indicators enabling users to verify the fitness-for-purpose of the S5P data.</p>


2020 ◽  
Author(s):  
Grégory Bazalgette Courrèges-Lacoste ◽  
Norrie Wright ◽  
Ben Veihelmann ◽  
Berit Ahlers ◽  
Olivier Le Rille ◽  
...  

<p>The Copernicus missions Sentinel-4 (S4) and Sentinel-5 (S5) will carry out atmospheric composition observations on an operational long-term basis to serve the needs of the Copernicus Atmosphere Monitoring Service (CAMS) and the Copernicus Climate Change Service (C3S).</p><p>Building on the heritage from instruments such as GOME, SCIAMACHY, GOME-2, and OMI, S4 is an imaging spectrometer instruments covering wide spectral bands in the ultraviolet and visible wavelength range (305-500nm) and near infrared wavelength range (750-775 nm). S4 will observe key air quality parameters with a pronounced temporal variability by measuring NO<sub>2</sub>, O<sub>3</sub>, SO<sub>2</sub>, HCHO, CHOCHO, and aerosols over Europe with an hourly revisit time.</p><p>A series of two S4 instruments will be embarked on the geostationary Meteosat Third Generation-Sounder (MTG-S) satellites. S4 establishes the European component of a constellation of geostationary instruments with a strong air quality focus, together with the NASA mission TEMPO and the Korean mission GEMS.</p><p>This paper will address the development status of the L1b Operational Processor (L1OPS) by EUMETSAT and the supporting L1b reference processor (L1RP) developed by ESA; In dedicated cases (e.g. CTI, Non-linearity signal loss, ...) the algorithms input from the S4 Industrial Prime have been used. The paper will also provide an overview of the status of the Level 2 processor developed by ESA for integration into the EUMETSAT MTG-S ground segment.</p>


2020 ◽  
Author(s):  
Jian Zeng ◽  
Irina Gerasimov ◽  
Jennifer Adams ◽  
Paul Huwe ◽  
Jennifer Wei ◽  
...  

<p>Since its launch in October 2017, the Sentinel-5 Precursor (Sentinel-5P), one of the European Commission’s new Copernicus family – Sentinels, has continuously proven to be successful, enhanced, and upgraded to its predecessor missions. The sole payload on Sentinel-5P is the TROPOspheric Monitoring Instrument (TROPOMI), which is a nadir-viewing 108 degree Field-of-View push-broom grating hyperspectral spectrometer, covering the wavelength of ultraviolet-visible (270 nm to 495 nm), near infrared (675 nm to 775 nm), and shortwave infrared (2305 nm - 2385 nm). Sentinel-5P is currently providing measurements of total column ozone, tropospheric nitrogen dioxide and formaldehyde, sulfur dioxide, methane, carbon monoxide, aerosol index and cloud at very high spatial resolutions. Ozone vertical profile products are scheduled to become available in April 2020. In addition, S5P/TROPOMI spectral design provides the possibility of developing other atmospheric composition products such as BrO, aerosol optical depth, sun-induced fluorescence, etc..</p><p> </p><p>The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the 12 Distributed Active Archive Centers (DAACs) within NASA's Earth Observing System Data and Information System (EOSDIS). The GES DISC archives and supports over a thousand data collections in the Focus Areas of Atmospheric Composition, Water & Energy Cycles, and Climate Variability. Under the End User License Agreement between NASA, European Space Agency (ESA) and European Commission (Copernicus Programme), GES DISC is curating S5P/TROPOMI Level-1B and Level-2 products and providing information services through enhanced tools and services that offer convenient solutions for complex Earth science data and applications. This presentation will demonstrate up-to-date TROPOMI products and their applications, as well as various efficient yet straightforward methods to access, visualize and subset TROPOMI data at GES DISC.</p>


2015 ◽  
Vol 15 (21) ◽  
pp. 31973-32004 ◽  
Author(s):  
P. J. Nowack ◽  
N. L. Abraham ◽  
P. Braesicke ◽  
J. A. Pyle

Abstract. Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term Solar Radiation Management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere–ocean coupled climate model, we include atmospheric composition feedbacks such as ozone changes under this scenario. Including the composition changes, we find large reductions in surface UV-B irradiance, with implications for vitamin D production, and increases in surface ozone concentrations, both of which could be important for human health. We highlight that both tropospheric and stratospheric ozone changes should be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.


2017 ◽  
Author(s):  
Anders V. Lindfors ◽  
Jukka Kujanpää ◽  
Niilo Kalakoski ◽  
Anu Heikkilä ◽  
Kaisa Lakkala ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching Earth's surface. Thus, the TROPOMI Surface UV product will contribute to the need of monitoring UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the OMI (Ozone Monitoring Instrument) and AC SAF (Satellite Application Facility for Atmospheric Composition and UV Radiation) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI Surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, corresponding to otherwise the same conditions but assuming a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and GOME-2 (Global Ozone Monitoring Experiment–2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.


2018 ◽  
Vol 11 (2) ◽  
pp. 997-1008 ◽  
Author(s):  
Anders V. Lindfors ◽  
Jukka Kujanpää ◽  
Niilo Kalakoski ◽  
Anu Heikkilä ◽  
Kaisa Lakkala ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.


Sign in / Sign up

Export Citation Format

Share Document