Spatial and temporal variability, triggers and drivers of seismically detected rockfalls in the Reintal catchment, German Alps 

Author(s):  
Anne Schöpa ◽  
Jens Turowski ◽  
Niels Hovius

<p>Rockfalls are a substantial geohazard to human life and infrastructure in mountainous regions but we still lack detailed understanding of when and where rockfalls occur, and which environmental conditions lead to rockfall over diurnal, seasonal and annual timescales. This is due to the fact that direct observations in alpine landscapes are difficult to make and long, high-resolution time series of measurements are rare. Using seismic techniques, we can collect near-complete catalogues of geomorphic events and record their distributions in time and space. This allows studying the interaction of process domains, the role of various rockfall triggers, and lead and lag times with unprecedented detail.</p><p>We use the unique six-year long seismic dataset of the Reintal rockfall observatory in the German Alps to detect, classify and locate rockfalls in the Reintal catchment. This rockfall catalogue enables us to analyse the spatial and temporal variability of rockfalls spanning several orders of magnitude in size. We test the hypothesis that variations of rockfall in the Reintal catchment are dominated by seasonal patterns. In combination with weather data, we examine boundary conditions, drivers and triggers of rockfalls in this alpine catchment.</p>

Author(s):  
A. Amengual ◽  
M. Borga ◽  
G. Ravazzani ◽  
S. Crema

AbstractFlash flooding is strongly modulated by the spatial and temporal variability in heavy precipitation. Storm motion prompts a continuous change of rainfall space-time variability that interacts with the drainage river system, thus influencing the flood response. The impact of storm motion on hydrological response is assessed for the 28 September 2012 flash flood over the semi-arid and medium-sized Guadalentín catchment in Murcia, southeastern Spain. The influence of storm kinematics on flood response is examined through the concept of ‘catchment-scale storm velocity’. This variable quantifies the interaction between the storm system motion and the river drainage network, assessing its influence on the hydrograph peak. By comparing two hydrological simulations forced by rainfall scenarios of distinct spatial and temporal variability, the role of storm system movement on the flood response is effectively isolated. This case study is the first to: (i) show through the catchment-scale storm velocity how storm motion may strongly affect flood peak and timing; and (ii) assess the influence of storm kinematics on hydrological response at different basin scales. In the end, this extreme flash flooding provides a valuable case study of how the interaction between storm motion and drainage properties modulate hydrological response.


2018 ◽  
Vol 64 (246) ◽  
pp. 523-535 ◽  
Author(s):  
CHARLIE BUNCE ◽  
J. RACHEL CARR ◽  
PETER W. NIENOW ◽  
NEIL ROSS ◽  
REBECCA KILLICK

ABSTRACTThe increasingly negative mass balance of the Greenland ice sheet (GrIS) over the last ~25 years has been associated with enhanced surface melt and increased ice loss from marine-terminating outlet glaciers. Accelerated retreat during 2000–2010 was concentrated in the southeast and northwest sectors of the ice sheet; however, there was considerable spatial and temporal variability in the timing and magnitude of retreat both within and between these regions. This behaviour has yet to be quantified and compared for all glaciers in both regions. Furthermore, it is unclear whether retreat has continued after 2010 in the northwest, and whether the documented slowdown in the southeast post-2005 has been sustained. Here, we compare spatial and temporal patterns of frontal change in the northwest and southeast GrIS, for the period 2000–2015. Our results show near-ubiquitous retreat of outlet glaciers across both regions for the study period; however, the timing and magnitude of inter-annual frontal position change is largely asynchronous. We also find that since 2010, there is continued terminus retreat in the northwest, which contrasts with considerable inter-annual variability in the southeast. Analysis of the role of glacier-specific factors demonstrates that fjord and bed geometry are important controls on the timing and magnitude of glacier retreat.


2017 ◽  
Vol 51 (06) ◽  
Author(s):  
Deepika Yadav ◽  
M. K. Awasthi ◽  
R. K. Nema

Accurate estimation of evapotranspiration is necessary step for better management and allocation of water resources. The United Nations Food and Agriculture Organization (FAO) adopted the Penman Moneith method as a global standard to estimate reference crop evapotranspiration (ETo). The study aimed to estimate FAO P-M reference evapotranspiration for different district of five agro climatic zones of Madhya Pradesh state by using Aquacrop model. Daily weather data including maximum and minimum temperature, precipitation, relative humidity, wind speed and solar radiation were collected for the period of 1979 to 2013 which were used as input data in Aquacrop. Several statistical parameters were used for characterizing the spatial and temporal variability of ETo. The average monthly ETo was found maximum in month of May (10.67 mm day-1) in all district of different agro climatic zones for the average period considered for the study and also for each years, whereas average minimum ETo was estimated in month of December (3.23 mm day-1) in Kymore Plateau and August (2.44 mm day-1) in Satpura Plateau. The mean daily reference evapotranspiration ranges from 4 mm day-1 to 10 mm day-1 for all districts. From the statistical analysis it was found that spatial variability of ETo lower than the temporal variability. It means the bigger differentiation of ETo in the years than in the space.


2020 ◽  
Vol 17 (6) ◽  
pp. 76-91
Author(s):  
E. D. Solozhentsev

The scientific problem of economics “Managing the quality of human life” is formulated on the basis of artificial intelligence, algebra of logic and logical-probabilistic calculus. Managing the quality of human life is represented by managing the processes of his treatment, training and decision making. Events in these processes and the corresponding logical variables relate to the behavior of a person, other persons and infrastructure. The processes of the quality of human life are modeled, analyzed and managed with the participation of the person himself. Scenarios and structural, logical and probabilistic models of managing the quality of human life are given. Special software for quality management is described. The relationship of human quality of life and the digital economy is examined. We consider the role of public opinion in the management of the “bottom” based on the synthesis of many studies on the management of the economics and the state. The bottom management is also feedback from the top management.


IIUC Studies ◽  
2020 ◽  
Vol 15 ◽  
pp. 33-46
Author(s):  
Kalim Ullah

Human beings are deeply related to land. Human beings take birth on land, live on land, die on land and mixes with land ultimately. As stated in the holy Quran: ‘We (Allah) created you (human beings) from the soil, we shall make you return to the soil and We shall call you back again from the soil’ (20:55). Human life is surrounded by soil i.e. land. So, land is a highly completed issue of human life involving economic, social, political, cultural and often religious systems. Land administration is thus a critical element and often a pre-condition for peaceful society and sustainable development. In administrating land, Khatian or record of rights plays a vital role to determine the rights and interests of the respective parties as supportive evidence. In this article, discussion is mainly made on the fact that Khatian or record of rights is not a document of title solely but it may be an evidence of title as well as possession. IIUC Studies Vol.15(0) December 2018: 33-46


Sign in / Sign up

Export Citation Format

Share Document