Use of helium as an artificial tracer to study surface water/groundwater exchange

Author(s):  
Théo Blanc ◽  
Morgan Peel ◽  
Matthias S. Brennwald ◽  
Rolf Kipfer ◽  
Philip Brunner

<p><span>Groundwater - surface water interactions (SGI) fundamentally control groundwater recharge. The according dynamics are, thus, key for sustainable (drinking) water management. SGI are particularly relevant in the context of climate change and re-naturalization of canalized rivers, which might affect the availability and quality of groundwater pumped near streams. SGI are often not directly observable due to their complex spatial and temporal patterns. To complement the few available tracer methods (dye, electric conductivity, heat, etc.) to analyze SGI, we developed a novel method to quantify riverine groundwater recharge by using helium (He) as an artificial tracer. </span></p><p><span>We injected gaseous He into a Swiss pre-alpine river (river Emme, canton of Berne) through perforated tubing which was placed on the riverbed. Dissolved He (as well as Ar, N</span><span>2 </span><span>and O</span><span>2</span><span>) concentrations were continuously monitored in the river (200 m downstream of the injection point) and in a piezometer (30 m away from the river) using a portable mass spectrometer allowing quantitative gas determination under field conditions (miniRUEDI, gas-equilibrium membrane-inlet mass spectrometer (GEMIMS), Gasometrix GmbH, Brennwald et al. (2016)). The He injection consisted of two pulses, each lasting around 8 hours, during which dissolved He became supersaturated by up to three orders of magnitude compared to the natural (atmospheric) He abundance in surface waters (concentration of air saturated water (ASW)). The two associated He pulses were clearly identifiable in the groundwater and appeared in the piezometer approximately one day after the injection phases. The measured He concentrations in the groundwater were four to six times higher than ASW.</span></p><p><span>In conclusion, our experimental setup allows the identification of the freshly infiltrated river water in an adjacent groundwater body in a concise, robust and straightforward manner. Our new method is also non-toxic and can thus often be implemented with minimal constraints. Such tracer methods provide useful observations to constrain physically based, surface water/groundwater models.</span></p>

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 363 ◽  
Author(s):  
Mohammad Bizhanimanzar ◽  
Robert Leconte ◽  
Mathieu Nuth

This paper presents a comparative analysis of the use of an externally linked (MOBIDIC-MODFLOW) and a physically based (MIKE SHE) surface water-groundwater model to capture the integrated hydrologic responses of the Thomas Brook catchment, in Canada. The main objective of the study is to investigate the effect of simplification in representation of the hydrological processes in MOBIDIC-MODFLOW on its simulation accuracy. To this aim, MOBIDIC and MODFLOW were coupled in order to sequentially exchange the groundwater recharge and baseflow discharges within each computation time step. Using identical sets of hydrogeological properties for the two models, the coefficients of the gravity and capillary reservoirs in MOBIDIC were calibrated so as to closely predict the hydrological budget of the catchment simulated with MIKE SHE. The simulated results show that the two models can closely replicate the observed water table responses at two monitoring wells. However, in very shallow water table locations, the instantaneous response of the water table was not precisely captured in MOBIDIC-MODFLOW. Additionally, the simplified conceptualization of the unsaturated flow in MOBIDIC-MODFLOW resulted in overestimated groundwater recharge during spring and underestimation during summer. Moreover, the computational efficiency of MOBIDIC-MODFLOW, as compared to MIKE SHE, along with less required input data, confirms its potential for regional scale groundwater-surface water interaction modelling applications.


2020 ◽  
Author(s):  
Muhammed Sinan ◽  
Vimal Mishra

<p>The interrelation between ground water and surface water has a serious consequence on water management. Groundwater level depletion gradually occurs in high water stress areas when there is groundwater extraction. Here we study the spatial and temporal patterns of surface water and groundwater flow in the Sabarmati Basin. We analyze the effect of groundwater pumping for irrigation purposes on the depletion of groundwater. We also assess the influence of drought and flooding on groundwater recharge in the basin, by modelling the basin in SWAT-MODFLOW for a period of 1901 to 2019. Our results show that the groundwater recharge in Sabarmati basin, which is a part of semi-arid region of India, is significantly affected by hydrological extremes (floods and droughts) during the monsoon (June – September). The insights of our research will help to overcome the grand challenge of water management in a changing climate scenario.</p>


1950 ◽  
Vol 20 (5) ◽  
pp. 714-728
Author(s):  
Fletcher A. Miller ◽  
Allan Hemingway ◽  
A.O. Nier ◽  
Ralph T. Knight ◽  
E.B. Brown ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 390-396 ◽  
Author(s):  
V. T. Kogan ◽  
D. S. Lebedev ◽  
A. K. Pavlov ◽  
Yu. V. Chichagov ◽  
A. S. Antonov

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2880
Author(s):  
Apolline Bambara ◽  
Philippe Orban ◽  
Issoufou Ouedraogo ◽  
Eric Hallot ◽  
Francis Guyon ◽  
...  

Through the practice of irrigation, surface water reservoirs (SWRs) contribute to the socio-economic development and food production activities of populations in Sub-Saharan Africa (SSA). However, they tend to dry up prematurely. One solution to circumvent these irrigation water shortages is to ensure their conjunctive use with groundwater. The objective of this study is to better understand the contribution of SWRs to groundwater recharge and to determine if groundwater may be considered as a complementary local resource for irrigation. The study was carried out on two watersheds in Burkina Faso, Kierma and Mogtedo. The spatiotemporal analysis of piezometric and SWRs level records coupled with physico-chemical analyses of water was used to characterize exchanges between SWRs and groundwater. The regional groundwater recharge at the scale of the watersheds was assessed. At the SWRs scale, a water balance methodology was developed and used to estimate focused recharge. The results show that SWRs interact almost continuously with groundwater and contribute focused recharge. The magnitude of this recharge is a function of the geological context and the sediment texture of the SWRs. It is estimated at 5 mm/day in Kierma and 4 mm/day in Mogtédo. These values are higher than the natural recharge estimated at 0.2 mm/day in Kierma and 0.1 mm/day in Mogtédo. Additionally, the values of hydraulic conductivity are between 0.01 and 2 m/day in Kierma and between 1 × 10−4 and 0.2 m/day in Mogtédo. These conductivities could allow pumping in large-diameter hand-dug wells with a significant yield between 0.5 and 120 m3/day in Kierma and between 0 and 10 m3/day in Mogtédo to palliate the early drying up of the SWRs.


Sign in / Sign up

Export Citation Format

Share Document