scholarly journals Cosmic-ray muography applications in underground tunnelling

Author(s):  
Pasi Kuusiniemi ◽  
Marko Holma ◽  
Zongxian Zhang

<p>The novel geophysical remote imaging method of muography is based on cosmic-ray induced muon particles that are detected after passing through the media of interest. If the studied objects are solid, their sizes can vary from meters to up to kilometres. In terms of penetration capability, muography can be placed between methods based on X-rays and those using seismic waves. The most famous objects imaged with muography are pyramids (e.g., Khufu's Pyramid at Giza in Egypt) and volcanoes (e.g., Mt Etna in Italy). One clear advantage of muography compared with seismic methods is that muons, unlike seismic waves, do not reflect from geological interfaces. In addition, the scattering phenomenon is a minor issue and needs consideration only at low-energy muons. Raw data must be corrected according to topography. On the basis of extensive numeric simulations of Hivert et al. (2017), the lowest density variations observable for muography with a significant level of 3σ (a typical significance level in physics) are around 2% at 150 m, 4% at 300 m, and 10% at 700 m of depth, respectively. If these numbers are extrapolated to depths below 100 m, the mean density differences in the range of 1% are likely within the observation capability of muography. It is also worth to note that the 1% difference in a mean rock density results in an approximately 3% difference in the muon flux. This indicates that muon flux measurements are very sensitive to the density variations of rocks.</p><p>In underground tunnelling, muography has at least four applications: (1) muography can be used to detect a potential risk (such as a water reservoir, a weak zone with loose rocks, boulders, etc.) before or during tunnelling, (2) muography can be employed to monitor overburden rock behaviour during tunnelling operation to avoid risks like the roof cave-ins, (3) muography can be applied to monitor the overburdening rock masses in tunnels after they are excavated to predict and avoid the collapse of rock mass, and (4) muography can be used to estimate the size and volume of a rock mass collapse in a tunnel since the volume of the collapsed rocks must have markedly smaller density than original overburden rock mass. In an excavating tunnel project using a tunnel boring machine (TBM), a muon detector can be installed in the TBM during tunnelling. If there occurs a tunnel cave-in, muography can be employed in undamaged tunnels nearby (sideways or below) the collapse. If possible, the collapse can also be approached safely via an undamaged part of the collapsed tunnel. If none of these are available, borehole muography can be applied as a substitute solution. Whereas an undamaged underground tunnel is either filled by air or water, a collapsed tunnel segment is characterized by air and rock, or water and rock. In either case, the average density of the tunnel segment is increased. We are currently planning simulations and real-world tests to validate these assumptions.</p>

2020 ◽  
Vol 53 (11) ◽  
pp. 4893-4907
Author(s):  
Zong-Xian Zhang ◽  
Timo Enqvist ◽  
Marko Holma ◽  
Pasi Kuusiniemi

Abstract Muography is a novel imaging method using natural cosmic-ray radiation for characterising and monitoring variation in average material density in a diverse range of objects that cannot be imaged by conventional imaging techniques. Muography includes muon radiography and muon tomography. Cosmic-ray-induced muons were discovered in the 1930’s, but rapid development of both muographic techniques has only occurred in the last two decades. With this rapid development, muography has been applied or tested in many fields such as volcano imaging, archaeology, underground structure and tunnel detection, rock mass density measurements, cargo scanning, imaging of nuclear waste and reactors, and monitoring of historical buildings and the inside of blast furnaces. Although applications of muography have already touched mining and rock engineering, such applications are still rare and they are just beginning to enter the market. Based on this background, this paper aims to introduce muography into the fields of mining and rock engineering. First, the basic properties of muons are summarized briefly. Second, potential applications of muography to mining and rock engineering are described. These applications include (1) monitoring temporal changes in the average material density of fracturing and deforming rock mass; (2) detecting geological structures and isolated ore bodies or weak zones in mines; (3) detecting a reservoir or boulders during tunnelling or drifting; (4) monitoring caving bodies to search remaining ore; (5) evaluating and classifying rock masses; (6) exploring new mineral deposits in operating underground mines and their surrounding brownfields. Finally, some issues such as maximum depth muons can reach are discussed.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


Nature ◽  
1985 ◽  
Vol 318 (6043) ◽  
pp. 267-269 ◽  
Author(s):  
C. L. Bhat ◽  
T. Kifune ◽  
A. W. Wolfendale
Keyword(s):  

2011 ◽  
Vol 75 (3) ◽  
pp. 427-430 ◽  
Author(s):  
N. Yu. Agafonova ◽  
◽  
V. V. Boyarkin ◽  
V. L. Dadykin ◽  
E. A. Dobrynina ◽  
...  

2020 ◽  
Vol 640 ◽  
pp. A37 ◽  
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

Context. A large fraction of cool-core clusters are known to host diffuse, steep-spectrum radio sources, called radio mini-halos, in their cores. Mini-halos reveal the presence of relativistic particles on scales of hundreds of kiloparsecs, beyond the scales directly influenced by the central active galactic nucleus (AGN), but the nature of the mechanism that produces such a population of radio-emitting, relativistic electrons is still debated. It is also unclear to what extent the AGN plays a role in the formation of mini-halos by providing the seeds of the relativistic population. Aims. In this work we explore the connection between thermal and non-thermal components of the intra-cluster medium in a sample of radio mini-halos and we study the implications within the framework of a hadronic model for the origin of the emitting electrons. Methods. For the first time, we studied the thermal and non-thermal connection by carrying out a point-to-point comparison of the radio and the X-ray surface brightness in a sample of radio mini-halos. We extended the method generally applied to giant radio halos by considering the effects of a grid randomly generated through a Monte Carlo chain. Then we used the radio and X-ray correlation to constrain the physical parameters of a hadronic model and we compared the model predictions with current observations. Results. Contrary to what is generally reported in the literature for giant radio halos, we find that the mini-halos in our sample have super-linear scaling between radio and X-rays, which suggests a peaked distribution of relativistic electrons and magnetic field. We explore the consequences of our findings on models of mini-halos. We use the four mini-halos in the sample that have a roundish brightness distribution to constrain model parameters in the case of a hadronic origin of the mini-halos. Specifically, we focus on a model where cosmic rays are injected by the central AGN and they generate secondaries in the intra-cluster medium, and we assume that the role of turbulent re-acceleration is negligible. This simple model allows us to constrain the AGN cosmic ray luminosity in the range ∼1044−46 erg s−1 and the central magnetic field in the range 10–40 μG. The resulting γ-ray fluxes calculated assuming these model parameters do not violate the upper limits on γ-ray diffuse emission set by the Fermi-LAT telescope. Further studies are now required to explore the consistency of these large magnetic fields with Faraday rotation studies and to study the interplay between the secondary electrons and the intra-cluster medium turbulence.


Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


2019 ◽  
Author(s):  
I.Y. Rasskazov ◽  
V.A. Lugovoy ◽  
D.I. Tso

В статье представлены экспериментальные исследования по обнаружению медленных деформационных волн, интенсифицирующих геомеханические процессы в массиве горных пород, с применением высокочувствительных лазерных измерений. Проведены результаты экспериментальных исследований по оценке влияния удаленных землетрясений на состояние горного массива Стрельцовского рудного поля, регистрации удаленных землетрясений и их предвестников. Приведены результаты регистрации землетрясения в заливе Аляска. Установлено влияние удаленных землетрясений на акустическую активность горного массива, которое проявляется в виде значительного увеличения количества акустических событий и их энергии после регистрации сейсмической волны. Выявлено, что наличие деформационных и сейсмических волн от удаленных землетрясений можно отнести к дополнительным факторам, инициирующим деформационные процессы в горном массиве. Своевременная регистрация данных волн и корректная их интерпретация позволят значительно повысить достоверность прогноза энергетических геодинамических событий в удароопасных массивах горных пород при разработке месторождений в целях предотвращения катастрофических событий.The article presents experimental investigations on the detection of slow waves intensifying geomechanical processes in rock massif, with the application of highsensitivity laser measurements. The results of experimental research for the evaluation of remote earthquakes impact on the condition of rock massif of Streltsovskoe ore field, registration of remote earthquakes and their forerunners are given. The results of the earthquake in the Gulf of Alaska, is represented in the article. The influence of distant earthquakes on the rock mass acoustic activity, which manifests itself in the form of a significant increase in the number of acoustic events and their energy after the registration of a seismic wave, is established. It is revealed that the presence of deformation and seismic waves from distant earthquakes can be attributed to additional factors that initiate deformation processes in the rock massif. Timely recording of these waves and their correct interpretation will significantly improve the accuracy of the prediction of energy geodynamic events in shockhazardous rock masses when developing fields in order to prevent catastrophic events.


1973 ◽  
Vol 55 ◽  
pp. 258-275 ◽  
Author(s):  
James E. Felten

Recent theories of the origins of diffuse-background X-rays are reviewed, with emphasis on theories of the soft flux in the galactic plane and at the poles. This is probably partly galactic and partly extragalactic in origin. Failure to observe absorption by the Small Magellanic Cloud and by galactic gas in neighboring directions may be due to sources in the Cloud and to statistical fluctuations in galactic emission and absorption. Several models for numerous low-luminosity sources in the Galaxy are available. True ‘diffuse’ emission seems unnecessary. Absorption by Galactic gas seems to agree roughly with theory. The soft extragalactic component may arise in a hot intergalactic medium.The existence of a ‘diffuse’ galactic-plane excess in 1–100 keV is in some doubt. Low-luminosity sources may contribute to this as well.For isotropic X-rays in 1 keV – 1 MeV, superposition theories involving clusters of galaxies, Seyfert galaxies, etc. over a cosmological path length are now roughly viable. Simple ‘metagalactic’ Compton theories seem excluded if the break at 40 keV is sharp, but this is now in doubt. A very hot intergalactic medium at T ≈ 3 × 108 K would give the possibility of a sharp break.A recent upper limit on the line source strength of 100-MeV photons in the galactic plane may create some difficulties for cosmic-ray theory. The spectral shape of π-γ photons has become a matter of theoretical dispute.


1974 ◽  
Vol 57 ◽  
pp. 421-422 ◽  
Author(s):  
Kenneth J. Frost

An instrument aboard the Fifth Orbiting Solar Observatory has observed hard solar X-rays from January 1969 to May 1972. A large number of X-ray bursts generated by solar cosmic ray flares have been observed. The X-ray bursts consist, in general, of two non-thermal components. The earliest occurring non-thermal component, coincident with the explosive phase, consists of a group of one to about ten X-ray bursts that are, for each burst, approximately 10 s duration and symmetrical in rise and decay. The time structure and multiplicity of these bursts is remarkably similar to that found in type III radio bursts in the meterwave band. The spectra of these bursts steepens sharply at energies greater than 100 keV indicating a limit at this energy for electron acceleration during the explosive or flash phase of the flare. For several flares these multiple X-ray bursts have occurred in coincidence with a group of type III bursts.


2013 ◽  
Vol 53 (A) ◽  
pp. 612-616
Author(s):  
Manami Sasaki

Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.


Sign in / Sign up

Export Citation Format

Share Document