scholarly journals A gridded European global dataset based on in-situ observations

2021 ◽  
Author(s):  
Gerard van der Schrier ◽  
Wouter Knap ◽  
Marieke Dirksen ◽  
Else J.M. van den Besselaar ◽  
Albert M.G. Klein Tank

<p>Within the EOBS project, one of the objectives is to provide an (ensemble) gridded data set of global radiation. <em>In-situ</em> observations of daily sums of global radiation are combined with daily sunshine duration records to construct a dataset for daily global radiation that goes back to 1950. A generalization of the commonly used Angstrom-Prescott formula is used to relate daily values of sunshine duration to global radiation, where optimal values of the parameters in this model are found by allowing for variations in the latitude and with the seasons. A quality control procedure based on the physical limits of  global radiation - latitude and yearday dependent - is applied to the data.</p><p>Based on this dataset, a gridded dataset for daily global radiation is produced with a resolution of 0.1 degree, covering Europe. The density of the combined networks of radiation and sunshine duration measurements hugely varies in space and time and this inhomogeneity is likely to give variations in space and time of the confidence of the gridded dataset. A method for enhancing the spatial analysis of daily global radiation from a sparse network is by incorporating information on the spatial covariance in the global radiation fields determined from high‐resolution measurements available in the past. Here we use satellite-based daily observations of downwards surface shortwave radiation from the CERES (Clouds and the Earth's Radiant Energy System) dataset for this purpose.</p><p>This approach is inspired by the reduced space optimal interpolation (RSOI) method, and the dominant patterns of variability are calculated using Self Organizing Maps (SOMs). Before reducing the dimension of the CERES dataset to 15 patterns, seasonal trends were removed. SOMs comprise a class of unsupervised neural networks that organize input geospatial data into a user-defined number of outputs (nodes) obtained by iteratively adjusting the nodes to resemble the input data. The training of this unsupervised artificial neural network is entirely data driven.</p><p>In the presentation, the similarity between the gridded dataset and the underlying station data is quantified, and a comparison against the CMSAF SARAH dataset is presented.</p>

2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p>The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</p><p>In fall 2021, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</p><p>In this presentation, an overview of the SARAH climate data record and their applications will be provided. A focus will be on the SARAH-3 developments and improvements (i.e. improved consideration of snow-covered surfaces). First validation results of the new Climate Data Record using surface reference observations will be presented. Further, SARAH-3 will be used for the analysis of the climate variability in Europe during the last decades.</p><p>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .</p>


2012 ◽  
Vol 8 (1) ◽  
pp. 19-25 ◽  
Author(s):  
J. Spinoni ◽  
M. Brunetti ◽  
M. Maugeri ◽  
C. Simolo

Abstract. We present a methodology for estimating solar radiation climatologies from a sparse network of global radiation and/or sunshine duration records: it allows to obtain high-resolution grids of monthly normal values for global radiation (and for the direct and diffuse components), atmospheric turbidity, and surface absorbed radiation. We discuss the application of the methodology to a preliminary version of an Italian global radiation and sunshine duration data set, which completion is still in progress and present the resulting 1961–1990 monthly radiation climatologies.


2019 ◽  
Author(s):  
Ivan Manso-Narvarte ◽  
Erick Fredj ◽  
Gabriel Jordà ◽  
Maristella Berta ◽  
Annalisa Griffa ◽  
...  

Abstract. Monitoring and investigating the dynamics of coastal currents is crucial for the development of environmentally sustainable coastal activities, in order to preserve marine ecosystems as well as to support marine and navigation safety. This need is driving the set-up of a growing number of multiplatform operational observing systems, aiming to the continuous monitoring of the coastal ocean. A significant percent of the existing observatories is today equipped with land-based High Frequency Radars (HFR), which provide real-time currents with unprecedent coverage and resolution, limited however, to the surface layer. The combination of data from HFR with complementary data from in-situ platforms providing information of the currents at subsurface layers (ADCP moorings) is investigated here to reconstruct the 3D current velocity field from in-situ observations. For this purpose, two methods based on different approaches are used. On the one hand, the Reduced Order Optimal Interpolation which is fed, in this case, with a spatial covariance matrix extracted from a realistic numerical oceanic simulation; and on the other hand, the Discrete Cosine Transform Penalized Least Square, which is a data gap-filling method based on penalized least squares regression that balances fidelity to the data and smoothness of the solution. As a proof of concept, we test the methods’ skills by using emulated observations of currents, extracted from a numerical simulation (3D reference field). The test set-up emulates the real observatory scenario in the study area (south-eastern Bay of Biscay), which includes a long-range HFR and two ADCP moorings inside the HFR footprint area. Then, the reconstructed fields (outputs of the methods) are compared with the 3D reference fields. In general, the results show satisfactory 3D reconstructions with mean spatial (for each depth level) errors between 0.55–10.94 cm s−1 for the first 150 m depth. The methods perform better in well sampled areas, and although different performances between the methods are observed, both show promising skills for the computation of new operational products integrating complementary observations, broadening the applications of in-situ observational data.


2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p class="western"><span lang="en-US">The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</span></p> <p class="western"><span lang="en-US">In 2022, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</span></p> <p class="western" align="left"><span lang="en-US">In this presentation, an overview of the SARAH climate data record and their applications will be given. A focus will be on the SARAH-3 developments and validation with surface reference observations. Further, SARAH-3 will be used for a first analysis of the climate variability and potential trends of global radiation in Europe during the last decades. </span><span lang="en-US">The data record reveals that there is an increasing trend of surface solar radiation in Europe during the last decades, which is superimposed by decadal and regional variability.</span></p>


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Miloslav Šír ◽  
Miroslav Tesař ◽  
Ľubomír Lichner ◽  
Henryk Czachor

AbstractOscillations of the air temperature and tensiometric pressure of the soil water were measured in the experimental slope Tomšovka (Czech Republic, Jizera Mts, 822 m a.s.l.). The brown forest soil (Dystric Cambisols) is covered with Calamagrostis villosa, Avenella flexuosa and Vaccinium myrtilus. Thermometers were placed at a height of 5 and 200 cm above the grassland. The tensiometer was installed in the root zone of grass at a depth of 15 cm. Oscillations in a cloudless day, August 24, 2001, (sunshine duration 12.1 hour/day, daily total of global radiation 22.4 MJ/m2/day, maximum intensity of global radiation 1008 W/m2, transpiration 13.7 MJ/m2/day) were analysed in detail. The oscillations with a period of about 30 to 60 minutes were recorded in the air temperature course taken from 11 am to 5 pm. At the height of 200 cm oscillations ranged from 24 to 28°C. Concurrently, in the depth of 15 cm, the oscillations of tensiometric pressure in the range of −6 to −11 kPa were recorded from 8 am to 4 pm. It was concluded that the oscillations in the air temperature resulted from autonomous and self-regulated oscillations in the intensity of transpiration. It is evident that the 2-m air temperature was significantly influenced by transpiration of plants around the large area. The fact that the air temperature oscillated sharply confirms that the rate of transpiration was synchronized in this area. Vegetative cover thus created a self-regulated superorganism that substantially affected the temperature of the near-ground atmosphere layer.


2021 ◽  
Author(s):  
Axel Andersson ◽  
Henry Kleta ◽  
Hildrun Otten-Balaccanu ◽  
Thomas Möller

<p>Die Erfassung und Überwachung des Wetters und des Klimas auf den Weltmeeren hat eine lange Tradition beim Deutschen Wetterdienst (DWD) und seinen Vorgängerorganisationen in Hamburg. Seit dem 19. Jahrhundert werden auf Schiffen systematisch meteorologische und ozeanographische Informationen gesammelt, die ein detailliertes Verständnis des maritimen Wetters und des Klimas ermöglichen. Bis heute sind die meteorologischen Schiffsbeobachtungen eine wichtige Datenquelle für die Wettervorhersage und die Klimaüberwachung.</p> <p>Der Deutsche Wetterdienst betreibt ein großes meteorologisches maritimes Messnetz, welches mehr als 500 Schiffe umfasst, die regelmäßig Wetterbeobachtungen auf allen Weltmeeren durchführen. Diese Schiffe beteiligen sich am internationalen <em>Voluntary Observing Ship (VOS) Scheme</em> und ihre Beobachtungen werden in Echtzeit über das globale Telekommunikationssystem (GTS) der WMO verbreitet. Dabei wird eine zunehmende Anzahl von Beobachtungen von automatischen Wetterstationen an Bord von Schiffen geliefert.</p> <p>Neben der Nutzung für die operationelle Wettervorhersage sind die maritim-meteorologischen Observationen ein wichtiger Beitrag zu klimatologischen Archiven wie der In-situ Datenbank des maritimen Klimadatenzentrums des DWD. Diese Datenbank besteht aus qualitätskontrollierten Daten aus Echtzeit- und <em>delayed mode</em> Datenströmen, sowie aus einer großen Menge historischer Daten. Der Datenbestand wächst kontinuierlich durch aktuelle operationelle Dateneingänge, aber auch durch die Digitalisierung alter meteorologischer Schiffsjournale und reicht von heute bis weit zurück in das 19 Jahrhundert. Im Rahmen des internationalen Datenaustauschs über die WMO / IOC <em>VOS Global Data Assembly Centres</em> (GDACs) werden die maritimen Klimadaten regelmäßig in den <em>International Comprehensive Ocean-Atmosphere Data Set</em> (ICOADS) integriert. Des Weiteren werden die Daten für eine Vielzahl von Klimaanwendungen verwendet, z.B. als Input für Reanalysen, für die operationelle Klimaüberwachung, klimatologische Analysen und Datenprodukte, sowie für die Kalibrierung von Satellitenbeobachtungen.</p>


2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


2015 ◽  
Vol 15 (17) ◽  
pp. 10087-10092 ◽  
Author(s):  
L. Kattner ◽  
B. Mathieu-Üffing ◽  
J. P. Burrows ◽  
A. Richter ◽  
S. Schmolke ◽  
...  

Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.


2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


Sign in / Sign up

Export Citation Format

Share Document